首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study considers the performance of tabulation methods for numerical simulation of complex chemical kinetics in laminar combusting flows and compares their predictions to results obtained by direct calculation. Two tabulation methods are considered: the Flame Prolongation of Intrinsic low-dimensional manifold (FPI) method and Steady Laminar Flamelet Model (SLFM). The FPI method is of current interest as it is a potentially unifying approach capable of dealing with both premixed and non-premixed flames for gaseous fuels. SLFM tabulation methods are popular for non-premixed flames and form a good basis for comparing the performance of the FPI approach. The performance of each method is also evaluated by comparing the results to the direct simulation of the laminar flames using two chemical kinetic schemes: simplified chemistry involving five species and one reaction and detailed chemistry involving 53 species and 325 reaction steps. As part of the evaluation process, the computational cost of each method is also assessed. The laminar flames considered in this study include: freely propagating laminar premixed flames, a two-dimensional axisymmetric methane–air opposed-jet diffusion flame, and a two-dimensional axisymmetric methane–air co-flow diffusion flame. Both tabulation methods are implemented in a parallel adaptive mesh refinement (AMR) framework for solving the complete set of governing partial differential equations. These equations are solved using a fully-coupled finite-volume formulation on body-fitted multi-block quadrilateral mesh. Significant improvements in terms of reduced computational requirements, as measured by both storage and processing time, are demonstrated for the tabulated methods.  相似文献   

2.
The effects of flow compression and flame stretch on the accurate determination of laminar flame speeds at normal and elevated pressures using propagating spherical flames at constant pressure or constant volume are studied theoretically and numerically. The results show that both the compression-induced flow motion and flame stretch have significant impacts on the accuracy of flame speed determination. For the constant pressure method, a new method to obtain a compression-corrected flame speed (CCFS) for nearly constant pressure spherical bomb experiments is presented. Likewise, for the constant volume method, a technique to obtain a stretch-corrected flame speed (SCFS) at elevated pressures and temperatures is developed. The validity of theoretical results for both constant pressure and constant volume methods is demonstrated by numerical simulations using detailed chemistry for hydrogen/air, methane/air, and propane/air mixtures. It is shown that the present CCFS and SCFS methods not only improve the accuracy of the flame speed measurements significantly but also extend the parameter range of experimental conditions. The results can be used directly in experimental measurements of laminar flame speeds.  相似文献   

3.
A finite volume large eddy simulation–conditional moment closure (LES-CMC) numerical framework for premixed combustion developed in a previous studyhas been extended to account for differential diffusion. The non-unity Lewis number CMC transport equation has an additional convective term in sample space proportional to the conditional diffusion of the progress variable, that in turn accounts for diffusion normal to the flame front and curvature-induced effects. Planar laminar simulations are first performed using a spatially homogeneous non-unity Lewis number CMC formulation and validated against physical-space fully resolved reference solutions. The same CMC formulation is subsequently used to numerically investigate the effects of curvature for laminar flames having different effective Lewis numbers: a lean methane–air flame with Leeff = 0.99 and a lean hydrogen–air flame with Leeff = 0.33. Results suggest that curvature does not affect the conditional heat release if the effective Lewis number tends to unity, so that curvature-induced transport may be neglected. Finally, the effect of turbulence on the flame structure is qualitatively analysed using LES-CMC simulations with and without differential diffusion for a turbulent premixed bluff body methane–air flame exhibiting local extinction behaviour. Overall, both the unity and the non-unity computations predict the characteristic M-shaped flame observed experimentally, although some minor differences are identified. The findings suggest that for the high Karlovitz number (from 1 to 10) flame considered, turbulent mixing within the flame weakens the differential transport contribution by reducing the conditional scalar dissipation rate and accordingly the conditional diffusion of the progress variable.  相似文献   

4.
5.
Numerical modeling is an attractive option for cost-effective development of new high-efficiency, soot-free combustion devices. However, the inherent complexities of hydrocarbon combustion require that combustion models rely heavily on engineering approximations to remain computationally tractable. More efficient numerical algorithms for reacting flows are needed so that more realistic physics models can be used to provide quantitative soot predictions. A new, highly-scalable combustion modeling tool has been developed specifically for use on large multiprocessor computer architectures. The tool is capable of capturing complex processes such as detailed chemistry, molecular transport, radiation, and soot formation/destruction in laminar diffusion flames. The proposed algorithm represents the current state of the art in combustion modeling, making use of a second-order accurate finite-volume scheme and a parallel adaptive mesh refinement (AMR) algorithm on body-fitted, multiblock meshes. Radiation is modeled using the discrete ordinates method (DOM) to solve the radiative transfer equation and the statistical narrow-band correlated-k (SNBCK) method to quantify gas band absorption. At present, a semi-empirical model is used to predict the nucleation, growth, and oxidation of soot particles. The framework is applied to two laminar coflow diffusion flames which were previously studied numerically and experimentally. Both a weakly-sooting methane–air flame and a heavily-sooting ethylene–air flame are considered for validation purposes. Numerical predictions for these flames are verified with published experimental results and the parallel performance of the algorithm analyzed. The effects of grid resolution and gas-phase reaction mechanism on the overall flame solutions were also assessed. Reasonable agreement with experimental measurements was obtained for both flames for predictions of flame height, temperature and soot volume fraction. Overall, the algorithm displayed excellent strong scaling performance by achieving a parallel efficiency of 70% on 384 processors. The proposed algorithm proved to be a robust, highly-scalable solution method for sooting laminar flames.  相似文献   

6.
Numerical and experimental investigations of unconfined methane-oxygen laminar premixed flames are presented. In a lab-scale burner, premixed flame experiments have been conducted using pure methane and pure oxygen mixtures having different equivalence ratios. Digital photographs of the flames have been captured and the radial temperature profiles at different axial locations have been measured using a thermocouple. Numerical simulations have been carried out with a C2 chemical mechanism having 25 species and 121 reactions and with an optically thin radiation sub-model. The numerical results are validated against the experimental and numerical results for methane-air premixed flames reported in literature. Further, the numerical results are validated against the results from the present methane-oxygen flame experiments. Visible regions in digital flame photographs have been compared with OH isopleths predicted by the numerical model. Parametric studies have been carried out for a range of equivalence ratios, varying from 0.24 to 1.55. The contours of OH, temperature and mass fractions of product species such as CO, CO2 and H2O, are presented and discussed for various cases. By using the net methane consumption rate, an estimate of the laminar flame speed has been obtained as a function of equivalence ratio.  相似文献   

7.
In this study, the influence of pressure and fuel dilution on the structure and geometry of coflow laminar methane–air diffusion flames is examined. A series of methane-fuelled, nitrogen-diluted flames has been investigated both computationally and experimentally, with pressure ranging from 1.0 to 2.7 atm and CH4 mole fraction ranging from 0.50 to 0.65. Computationally, the MC-Smooth vorticity–velocity formulation was employed to describe the reactive gaseous mixture, and soot evolution was modelled by sectional aerosol equations. The governing equations and boundary conditions were discretised on a two-dimensional computational domain by finite differences, and the resulting set of fully coupled, strongly nonlinear equations was solved simultaneously at all points using a damped, modified Newton's method. Experimentally, chemiluminescence measurements of CH* were taken to determine its relative concentration profile and the structure of the flame front. A thin-filament ratio pyrometry method using a colour digital camera was employed to determine the temperature profiles of the non-sooty, atmospheric pressure flames, while soot volume fraction was quantified, after evaluation of soot temperature, through an absolute light calibration using a thermocouple. For a broad spectrum of flames in atmospheric and elevated pressures, the computed and measured flame quantities were examined to characterise the influence of pressure and fuel dilution, and the major conclusions were as follows: (1) maximum temperature increases with increasing pressure or CH4 concentration; (2) lift-off height decreases significantly with increasing pressure, modified flame length is roughly independent of pressure, and flame radius decreases with pressure approximately as P?1/2; and (3) pressure and fuel stream dilution significantly affect the spatial distribution and the peak value of the soot volume fraction.  相似文献   

8.
The solution of reactive flows using fully implicit methods on distributed memory machines is investigated in detail. Three different parallel implementations of Newton's method are described and tested on the solution of two-dimensional laminar axisymmetric coflow diffusion flames. Each implementation has different computational requirements, both in the amount of communication among the processes and in the computational overhead due to the calculation of physical quantities at the interfaces between subdomains. An effective trade-off is established between communications and calculations so that the most communication-intensive implementation results in computational speedup only if the network is sufficiently fast.

Benchmark results are presented for a variety of chemical mechanisms, grid decomposition techniques, and hardware. Parallelization efficiencies of about 80% and speedups of 20–100 are reported for most test cases. The method developed here is well suited for complex chemistry problems with very large mechanisms; in particular, the numerical solution of a laminar axisymmetric JP-8/air coflow diffusion flame with a 222-species mechanism is made possible using this approach.  相似文献   

9.
Premixed turbulent flames of methane–air and propane–air stabilized on a bunsen type burner were studied using planar Rayleigh scattering and particle image velocimetry. The fuel–air equivalence ratio range was from lean 0.6 to stoichiometric for methane flames, and from 0.7 to stoichiometric for propane flames. The non-dimensional turbulence rms velocity, u′/SL, covered a range from 3 to 24, corresponding to conditions of corrugated flamelets and thin reaction zones regimes. Flame front thickness increased slightly with increasing non-dimensional turbulence rms velocity in both methane and propane flames, although the flame thickening was more prominent in propane flames. The probability density function of curvature showed a Gaussian-like distribution at all turbulence intensities in both methane and propane flames, at all sections of the flame.The value of the term , the product of molecular diffusivity evaluated at reaction zone conditions and the flame front curvature, has been shown to be smaller than the magnitude of the laminar burning velocity. This finding questions the validity of extending the level set formulation, developed for corrugated flames region, into the thin reaction zone regime by increasing the local flame propagation by adding the term to laminar burning velocity.  相似文献   

10.
激波与火焰作用的实验与理论研究   总被引:1,自引:0,他引:1  
采用高速摄影技术拍摄了等当量比的甲烷/空气预混气环境下,火焰与激波相互作用的时序照片,对实验结果进行了分析讨论。使用基于带化学反应的N-S方程和热力学数据,利用改进的VLS格式,对等当量比条件下甲烷/空气预混气中激波与火焰的相互作用进行了数值模拟,并利用光学知识,进行了计算光学的数值模拟。实验结果与数值计算结果进行了比较,两者符合得较好。  相似文献   

11.
A knowledge of flame stability regimes in the presence of cylindrical bluff-bodies of various dimensions is essential to design non-premixed burners. The reacting flow field in such cases is reported to be three-dimensional and unsteady. In the literature, only a few experimental investigations with limited measurements are available. Therefore, in this work, a detailed numerical study of laminar cross-flow non-premixed methane–air flames in the presence of a square cylinder is presented. The flow, temperature, species and reaction fields have been predicted using a comprehensive transient three-dimensional reacting flow model with detailed chemical kinetics and variable thermo-physical properties, in order to get a good insight into the flame stabilisation phenomena. Further, analyses of quantities such as local equivalence ratio, cell Damköhler number, species velocity, net consumption rate of methane, which are not easily obtained through experiments even with detailed diagnostics, have been carried out. The influence of the flow field due to varying inlet velocity of the oxidiser, in the presence of the bluff-body, on flame anchoring location has been analysed in detail. Local equivalence ratio contours obtained from non-reacting flow calculations are seen to be quite useful in analysing the mixing process and in the prediction of flame anchoring locations when the flames are not separated. Cell Damköhler number has been calculated using cell size, species velocity of the fuel, which is a derived quantity, and the net reaction rate of the fuel. The flame zone, which is customarily inferred from the contours of temperature, CO and OH, is also shown to be predicted well by the contour line corresponding to a Damköhler number equal to unity. The net reaction rate of CH4 and the net rates of two dominant reactions, which consume methane, show clearly the variation in the flame anchoring locations in these three cases. Further, the three-dimensionality of these flames are analysed by plotting the mean temperature contours in yz planes. Finally, the unsteadiness in the separated flame case is analysed.  相似文献   

12.
Direct numerical simulations with a C3-chemistry model have been performed to investigate the transient behavior and internal structure of flames propagating in an axisymmetric fuel jet of methane, ethane, ethylene, acetylene, or propane in normal earth gravity (1g) and zero gravity (0g). The fuel issued from a 3-mm-i.d. tube into quasi-quiescent air for a fixed mixing time of 0.3 s before it was ignited along the centerline where the fuel–air mixture was at stoichiometry. The edge of the flame formed a vigorously burning peak reactivity spot, i.e., reaction kernel, and propagated through a flammable mixture layer, leaving behind a trailing diffusion flame. The reaction kernel broadened laterally across the flammable mixture layer and possessed characteristics of premixed flames in the direction of propagation and unique flame structure in the transverse direction. The reaction kernel grew wings on both fuel and air sides to form a triple-flame-like structure, particularly for ethylene and acetylene, whereas for alkanes, the fuel-rich wing tended to merge with the main diffusion flame zone, particularly methane. The topology of edge diffusion flames depend on the properties of fuels, particularly the rich flammability limit, and the mechanistic oxidation pathways. The transit velocity of edge diffusion flames, determined from a time series of calculated temperature field, equaled to the measured laminar flame speed of the stoichiometric fuel–air mixtures, available in the literature, independent of the gravity level.  相似文献   

13.
The ignition and combustion processes of transient turbulent methane jets under high-pressure and moderate temperature conditions were simulated using a computationally efficient combustion model. Closure for the mean chemical source-terms was obtained with Conditional Source-term Estimation (CSE) using first conditional moment closure in conjunction with a detailed chemical kinetic mechanism, which was reduced to a Trajectory-Generated Low-Dimensional Manifold (TGLDM). The accuracy of the manifold was first validated against the direct integral method by comparing the predicted reactive scalar profiles in three methane–air reaction systems: a laminar premixed flame, a laminar flamelet and a perfectly stirred reactor. Detailed CFD simulations incorporating the CSE-TGLDM model were able to provide reasonably good predictions of the experimental ignition delay and initial ignition kernel locations of the methane jets reported in the literature with relatively low computational cost. Nitrogen oxides formed in the methane jet flame were found to be underpredicted by the model by as much as a factor of 2. The discrepancy may be attributable to the inability of the simulation to account for the effects of the rarefaction wave in the shock-tube experiments.  相似文献   

14.
An experimental study on CH4–CO2–air flames at various pressures is conducted by using both laminar and turbulent Bunsen flame configurations. The aim of this research is to contribute to the characterization of fuel lean methane/carbon dioxide/air premixed laminar and turbulent flames at different pressures, by studying laminar and turbulent flame propagation velocities, the flame surface density and the instantaneous flame front wrinkling parameters. PREMIX computations and experimental results indicate a decrease of the laminar flame propagation velocities with increasing CO2 dilution rate. Instantaneous flame images are obtained by Mie scattering tomography. The image analysis shows that although the height of the turbulent flame increases with the CO2 addition rate, the flame structure is quite similar. This implies that the flame wrinkling parameters and flame surface density are indifferent to the CO2 addition. However, the pressure increase has a drastic effect on both parameters. This is also confirmed by a fractal analysis of instantaneous images. It is also observed that the combustion intensity ST/SL increases both with pressure and the CO2 rate. Finally, the mean fuel consumption rate decreases with the CO2 addition rate but increases with the pressure.  相似文献   

15.
A numerical study of laminar diffusion flames established over a condensed fuel surface, inclined at several angular orientations in the range of –90°?θ?+90° with respect to the vertical axis, under atmospheric pressure and normal gravity environment, is presented. Methanol is employed as the fuel. A numerical model, which solves transient gas-phase, two-dimensional governing conservation equations, with a single-step global reaction for methanol–air oxidation and an optically thin radiation sub-model, has been employed in the present investigation. Numerical results have been validated against the experimental data from the present study. Thereafter, the model is used to investigate the influence of angular orientation of fuel surface on its quasi-steady burning characteristics. Results in terms of fuel mass burning rate, flame stand-off distances, temperature field, velocity profiles and oxygen contours have been presented and discussed in detail. It is observed that orientation angles in the range of –45°?θ? –30° (fuel surface facing upwards), yield the maximum mass burning rates. The flame anchoring location near the leading edge of the fuel surface, normal gradient of fuel vapor mass fraction at the surface and oxygen contours have been used to explore this unique behavior. Based on the numerical results, a theoretical correlation to predict the mass burning rate as a function of fuel surface orientation is also proposed. Furthermore, a discussion on the differences in the structure of laminar diffusion flame established over fuel surface as a function of its angular orientation is included.  相似文献   

16.
Ammonia combustion appears as a meaningful way to retrieve stored amounts of excess variable renewable energy, and the spark-ignition (SI) engine has been proposed as a practical conversion system. The present work aims at elucidating the combustion characteristics of ammonia blends in engine-relevant turbulent conditions. To that end, laminar and turbulent flame experiments were conducted in a constant-volume vessel at engine-relevant conditions of 445 K and 0.54 MPa to assess the combustion behavior of ammonia/hydrogen/air, ammonia/methane/air and methane/hydrogen/air mixtures observed in an all-metal single-cylinder SI engine. Results show that the respective accelerating or decelerating effects of hydrogen or methane enrichment observed in the SI engine could not be sufficiently explained by the measured laminar burning velocities of the mixtures. Since the latter are very low, the studied combustion regimes are at the boundary between the thin and broken reaction zones regimes, and thus strongly influenced by flame-turbulence interactions. The quantification of the flame response to turbulence shows much higher effects for ammonia blends, than for methane-based fuels. The aforementioned opposite effects of ammonia enrichment with hydrogen or methane are observed on the turbulent burning velocity during the turbulent flame experiments and correlated to the thermochemical properties of the reactants and the flame sensitivity to stretch. The latter may explain an unexpected bending effect on the turbulent-to-laminar velocity ratio when increasing the hydrogen fraction in the ammonia/hydrogen blend. Nevertheless, a very good correlation of the turbulent velocity was found with the Karlovitz and Damköhler numbers, that suggests that ammonia combustion in SI engines may be described following the usual turbulent combustion models. This encourages further investigations on ammonia combustion for the optimization of practical systems, by means of dedicated experiments and numerical simulations.  相似文献   

17.
A constant volume vessel has been used in conjunction with a numerical multi-zone model to calculate laminar burning velocities of methane and n-butane in the ranges φ = 0.8–1.4, T u = 320–470 K, p u = 1–15 bar from the pressure record. This multi-zone model has been compared with the analytical model of Luijten and de Goey. For methane, the experimental data have been compared with modelling data generated using the MIXFLA program of Warnatz. The MIXFLA data have further been used to examine the form of the correlation fitted to the experimental data, confirming the form used by Clarke. For methane, good agreement was found between the current experimental data and the literature at high pressures. For n-butane, poor agreement was found with the one data set available. However, the data from this reference did not compare well with other authors for methane.  相似文献   

18.
Flame stabilisation in a combustor having vortices generated by flame holding devices constitutes an interesting fundamental problem. The presence of vortices in many practical combustors ranging from industrial burners to high speed propulsion systems induces vortex–flame interactions and complex stabilisation conditions. The scenario becomes more complex if the flame sustains after separating itself from the flame holder. In a recent study [P.K. Shijin, S.S. Sundaram, V. Raghavan, and V. Babu, Numerical investigation of laminar cross-flow non-premixed flames in the presence of a bluff-body, Combust. Theory Model. 18, 2014, pp. 692–710], the authors reported details of the regimes of flame stabilisation of non-premixed laminar flames established in a cross-flow combustor in the presence of a square cylinder. In that, the separated flame has been shown to be three dimensional and highly unsteady. Such separated flames are investigated further in the present study. Flame–vortex interactions in separated methane–air cross flow flames established behind three bluff bodies, namely a square cylinder, an isosceles triangular cylinder and a half V-gutter, have been analysed in detail. The mixing process in the reactive flow has been explained using streamlines of species velocities of CH4 and O2. The time histories of z-vorticity, net heat release rate and temperature are analysed to reveal the close relationship between z-vorticity and net heat release rate spectra. Two distinct fluctuating layers are visible in the proper orthogonal decomposition and discrete Fourier transform of OH mass fraction data. The upper fluctuating layer observed in the OH field correlates well with that of temperature. A detailed investigation of the characteristics of OH transport has also been carried out to show the interactions between factors affecting fluid dynamics and chemical kinetics that cause multiple fluctuating layers in the OH.  相似文献   

19.
20.
A pseudo-compressibility method is proposed to modify the acoustic time step restriction found in fully compressible, explicit flow solvers. The method manipulates terms in the governing equations of orderMa2, whereMais a characteristic flow Mach number. A decrease in the speed of acoustic waves is obtained by adding an extra term in the balance equation for total energy. This term is proportional to flow dilatation and uses a decomposition of the dilatational field into an acoustic component and a component due to heat transfer. The present method is a variation of the pressure gradient scaling (PGS) method proposed in Ramshawet al(1985 Pressure gradient scaling method for fluid flowwith nearly uniform pressureJ. Comput. Phys.58 361–76). It achieves gains in computational efficiencies similar to PGS: at the cost of a slightly more involved right-hand-side computation, the numerical time step increases by a full order of magnitude. It also features the added benefit of preserving the hydrodynamic pressure field. The original and modified PGS methods are implemented into a parallel direct numerical simulation solver developed for applications to turbulent reacting flows with detailed chemical kinetics. The performance of the pseudo-compressibility methods is illustrated in a series of test problems ranging from isothermal sound propagation to laminar premixed flame problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号