首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterogeneous polymerization of acrylonitrile initiated by ceric ammonium sulfate–citric acid (C.A.) redox system is reported at 35 ± 0.2°C under nitrogen atmosphere. The rate of monomer disappearance is found to be proportional to [C.A.]0, [Ce4+]0.63, and [Monomer]1.59. The rate of ceric ion disappearance is directly proportional to ceric ion concentration but independent of monomer concentration. The initial rate was independent of [H2SO4]. The molecular weight of polyacrylonitrile increases with increasing monomer concentration and decreasing ceric ion concentration. Activation energy was found to be 27.9 kJ/mol.  相似文献   

2.
Homogeneous polymerization of methacrylamide initiated by the ceric ammonium sulfate-citric acid (CA) redox pair has been investigated and reported at 35 ± 0.2°C under nitrogen atmosphere. The initiation was caused by the free radical generated by the decomposition of the complex formed between ceric ion and citric acid. The rate of monomer disappearance was found to be proportional to [CA]0.4, [Ce0.4+]0.65, and [Monomer]1 The rate of ceric ion disappearance was directly proportional to the ceric ion concentration but independent of the monomer concentration. The initial rate was independent of [H2SO4]. The activation energy of the system was found to be 21.4 kJ/mol.  相似文献   

3.
The effect of various substituted amines on the polymerization of acrylonitrile initiated by ceric ammonium sulfate has been studied in aqueous solution at 30°C. It was found that the secondary and tertiary amines considerably increased the rate of polymerization, whereas the primary amines seemed to have no effect at all. From the kinetic studies it was found that the overall polymerization rate Rp is independent of ceric ion concentration and can be expressed by the equation: Rp = k1 [amine] [monomer] + k2[monomer]2, where k1 and k2 are constants (involving different rate constants). The accelerating effect of the amines was attributed to a redox reaction between the ceric ion and the amine involving a single electron transfer, the relative activity of the different amines being thus dependent on the relative electron-donating tendency of the substituents present in the amine. The mechanism of the polymerization is discussed on the basis of these results, and various kinetic constants are evaluated.  相似文献   

4.
The kinetics of acrylamide polymerization has been investigated by employing cericammoniumnitrate-2-chloroethanol redox pair under nitrogen atmosphere at 30 ± 1°C. The rate of monomer disappearance is directly proportional to the concentration of 2-chloroethanol (1.0 × 10?2 ? 10.0 × 10?2 mol. dm?3) and is inversely proportional to the ceric ion concentration (2.5 × 10?3 ? 10.0 × 10?3 mol. dm?3) but shows square dependence to the concentration of monomer (5.0 × 10?2 ? 25.0 × 10?2 mol. dm?3). The rate of ceric ion disappearance is directly proportional to the initial concentration of ceric ion and 2-chloroethanol but independent of acrylamide concentration. The viscometric average molecular weight (M v) decreases on increasing the concentration of ceric ion and increases on increasing the concentrations of acrylamide and 2-chloroethanol. A tentative mechanism has been proposed.  相似文献   

5.
Polymerization of acrylamide monomer, initiated by the redox system involving acidified ceric ammonium sulfate and 2-mercaptoethanol (2-ME) was carried out in an aqueous medium at 25° C. White, rigid polyacrylamide, isolated under controlled experimental conditions, showed a molecular weight of 1.5 × 104 from viscosity measurements. The rate of monomer (M) conversion to polymer was found to be proportional to [M]1.5, [2-ME]0.5, and [Ce(IV)]0.4. Further, the rate of disappearance of ceric ion was observed to be directly proportional to [2-ME] and independent of [M] in the range of 0.16–0.48 mole/liter. The explanation of the above proportionalities is given in terms of a proposed reaction mechanism. Values of the usual rate constants, kr, k0/kt and kt./kp ½ have been computed.  相似文献   

6.
Ethylenediamine tetraacetic acid (EDTA) terminated polyacrylamide was obtained by using the EDTA–cerium(IV) ammonium nitrate [Ce(IV)] redox initiator in the aqueous polymerization of acrylamide. The polymerization behaviors as a function of the concentration of Ce(IV), EDTA, and acrylamide as well as temperature were studied. The consumption rate of cerium(IV) depends a first-order reaction on the ceric ion concentration ([Ce(IV)]). The complex formation constant (K) and disproportionation constant (kd) of Ce(IV)–EDTA chelated complex are 1.67 × 104 and 3.77 × 10?3, respectively. The rate dependences of polymerization on monomer concentration and EDTA concentration both follow a second-order reaction in the run of initial monomer concentration ([M]i) equal to 0.2 mol dm?3. The number average molecular weight increases linearly with the ratio of [M]i/[Ce(IV)]i. The mechanism and kinetics for the polymerization was proposed. The kinetic parameters involved were determined. © 1992 John Wiley & Sons, Inc.  相似文献   

7.
The polymerization of acrylonitrile (M) initiated by the Ce(IV)–acetophenone (AP) redox pair has been studied in acetic–sulfuric acid mixtures in a nitrogen atmosphere. The rate of polymerization is proportional to [M]3/2, [AP]1/2 and [Ce(IV)]1/2. The rate of disappearance of ceric ion,–RCe, is proportional to [AP], [M], and [Ce(IV)]. The effect of certain salts, solvent, acid and temperature on both the rates have been investigated. A suitable kinetic scheme has been proposed, and the composite rate constants kp 2(k/k/t) and k0/ki are reported.  相似文献   

8.
    
The kinetics of polymerization of acrylic acid (AA) and methacrylamide (MAM) initiated by the redox system Mn3+ -ethoxyacetic acid (EAA) in aqueous sulphuric acid was studied at 35°C. The polymerization of both the monomers followed the same mechanism, viz., initiation by the primary radical arising from the oxidation of EAA and termination by the Mn3+ ion. The rate coefficientsk i /k 0 andk p /k i were correlated to monomer and polymer radical reactivities, respectively. Acrylic acid was found to have higher monomer and polymer radical reactivities than methacrylamide.  相似文献   

9.
Kinetic study of aqueous polymerization of ethyl acrylate (EA) is carried out at 30 °C in dilute sulphuric acid medium by employing ammonium ceric sulphate–methyl ethyl ketone (MEK) as redox initiator system. The ceric ion consumption is found to be first order with respect to ceric ion and half order with respect to reducing agent concentrations. No complex formation between ceric ion and reducing agent is observed. The orders with respect to ceric ion, reducing agent and monomer concentrations are evaluated for the aqueous polymerization of EA by Ce(IV)–MEK redox initiator system, and are found to be 0.5, 0.5 and 1.4, respectively . The overall activation energy, E overall, for aqueous polymerization of EA in the temperature region of 27–40°C is found to be 20.27 kJ/mol. A kinetic scheme for the aqueous polymerization of EA initiated by Ce(IV)–MEK redox initiator system is presented.This revised version was published online in June 2005 with corrections to figure legends as well as small corrections within text.  相似文献   

10.
Abstract

Polymerizations of methyl methacrylate (MMA) and acrylonitrile (AN) were carried out in aqueous nitric acid at 30°C with the redox initiator system ammonium ceric nitrate-ethyl cellosolve (EC). A short induction period was observed as well as the attainment of a limiting conversion for polymerization reactions. The consumption of ceric ion was first order with respect to Ce(IV) concentration in the concentration range (0.2–0.4) × 10?2 M, and the points at higher and lower concentrations show deviations from a linear fit. The plots of the inverse of pseudo-first-order rate constant for ceric ion consumption, (k 1)?1 vs [EC]?1, gave straight lines for both the monomer systems with nonzero intercepts supporting complex formation between Ce(IV) and EC. The rate of polymerization increases regularly with [Ce(IV)] up to 0.003 M, yielding an order of 0.41, then falls to 0.0055 M and again shows a rise at 0.00645 M for MMA polymerization. For AN polymerization, R p shows a steep rise with [Ce(IV)] up to 0.001 M, and beyond this concentration R p shows a regular increase with [Ce(IV)], yielding an order of 0.48. In the presence of constant [NO? 3], MMA and AN polymerizations yield orders of 0.36 and 0.58 for [Ce(IV)] variation, respectively. The rates of polymerization increased with an increase in EC and monomer concentrations: only at a higher concentration of EC (0.5 M) was a steep fall in R p observed for both monomer systems. The orders with respect to EC and monomer for MMA polymerization were 0.19 and 1.6, respectively. The orders with respect to EC and monomer for AN polymerization were 0.2 and 1.5, respectively. A kinetic scheme involving oxidation of EC by Ce(IV) via complex formation, whose decomposition gives rise to a primary radical, initiation, propagation, and termination of the polymeric radicals by biomolecular interaction is proposed. An oxidative termination of primary radicals by Ce(IV) is also included.  相似文献   

11.
The aqueous polymerization of acrylonitrile initiated by the bromate—ferrous redox system in aqueous sulfuric acid was studied under nitrogen atmosphere. The rate of polymerization increased with increasing concentration of ferrous in the range of 0.25-1 × 10?2M. The percentage of conversion increased with increasing concentration of the catalyst, but beyond 2.5 × 10?3M there was a decreasing trend in the rate of polymerization. The rate varied linearly with [monomer]. The initial rate of polymerization as well as the maximum conversion increased within the range of 1–2.5 × 10?3M KBrO3, but beyond 2.5 × 10?3M the rate of polymerization decreased. The initial rate and limiting conversion increased with increasing polymerization temperature in the range 30–40°C; beyond 40°C they decreased. The effect of certain neutral salts, water-miscible solvents, complexing agents, and copper sulfate concentration on the rate of polymerization was investigated.  相似文献   

12.
The kinetics of ceric-thiourea initiated aqueous polymerization of methyl methacrylate in 1 M H2SO4 have been studied. Ceric ion and thiourea initially form an 1:1 complex which then reacts with uncomplexed ceric ion to form the initiating thiocarbamido radicals. The termination is predominantly biomolecular below an initial ceric concentration of 0.66 × 10?2 M (depending upon the rate of initiation). At higher initial ceric concentrations, polymer radicals are terminated overwhelmingly by ceric ions. Substituted thioureas reduce the rate of polymerization according to the order of increasing electron density on the sulphur atom. The overall activation energy of polymerization is 12.1 kcal/mol in the region of bimolecular termination and 10.2 kcal/mol in the region of metal ion termination.  相似文献   

13.
Polymerization of methyl methacrylate was carried out in aqueous nitric acid in the temperature range 26–40°C, with the redox initiator system ceric ammonium nitrate–isopropyl alcohol. A short induction period was observed, as well as the attainment of a limiting conversion, and the total ceric ion consumption with reaction time. The reaction orders were 1/2 and 3/2 with respect to the IPA and monomer concentration, respectively, within the range (3–5) × 10?3M of Ce(IV). But at lower Ce(IV) concentration (≤ 1 × 10?3M), the order with respect to monomer and Ce(IV) changed to 1 and 1/2, respectively. The rate of ceric ion disappearance was first order with respect to Ce(IV) concentration and (RCe)?1 was proportional to [IPA]?1. Both the rate of polymerization and the rate of ceric ion consumption increase with rise in temperature. The average-molecular weight can be controlled by variations in IPA, Ce(IV), and monomer concentrations, and in temperature. A kinetic scheme involving oxidation of IPA by Ce(IV) via complex formation, whose decomposition gives rise to a primary radical, initiation, propagation, and termination of the polymeric radicals by bimolecular interaction is proposed. An oxidative termination of primary radicals by Ce(IV) is also included.  相似文献   

14.
The polymerization of acrylamide (M) in aqueous sulfuric acid medium initiated with ceric ammonium sulfate–malic acid redox pair was investigated at 35 ± 0.2°C under nitrogen atmosphere. The initiation was caused by the free radical generated by the decomposition of the complex formed between ceric ion and malic acid (MA). The rate of monomer disappearance was proportional to the first power of malic acid, ceric ion, and monomer concentrations at lower ceric ion concentrations. However, at higher ceric ion concentrations the rate was independent of [Ce(IV)]. The rate of ceric ion disappearance was proportional to [MA] and [Ce(IV)] but independent of [M] at lower ceric ion concentrations. The activation energy was found to be 57.74 kJ/mol. Sulfuric acid retarded the reaction. Molecular weights increased with increasing [M] and decreasing [Ce(IV)].  相似文献   

15.
The kinetics of radical polymerization of N-vinylcaprolactam initiated by the thermal decomposition of AIBN at 60°C in monomer solutions in benzene has been studied in a wide range of conversions. The heat of polymerization of N-vinylcaprolactam is 76.0 ± 0.9 kJ/mol; at initial conversions, the polymerization of N-vinylcaprolactam is of the first order with respect to the monomer and of the 0.5th order with respect to the initiator. The ratio of chain propagation and chain termination rate constants k p/k ter 0.5 is 0.578 l0.5/(mol s)0.5, thus suggesting a high propagation rate constant k p > 103 l/(mol s). At a high initial concentration of the monomer, the kinetic curves demonstrate a weakly pronounced gel effect, and, in the gel permeation chromatography curves of the polymers, the second high-molecular-mass mode emerges, whose intensity grows with conversion. The observed kinetic features are interpreted in terms of the diffusion control of the gel effect.  相似文献   

16.
The aqueous polymerization of acrylamide initiated by the glycolic acid/Ce4+ redox system was studied in sulfuric acid medium at 35 ± 0.2°C under a nitrogen atmosphere. The initiation was carried out by the free radical generated in the decomposition of the complex formed between the oxidant and the reductant. The monomer disappearance was found to be proportional to [GA]0,89[Ce4+]0.57[M]1.0, and the rate of ceric ion disappearance was found to be directly proportional to [Ce4+] and [GA] but independent of [M]. The activation energy of the system was found to be 7.21 kcal/deg/mol. The molecular weight of polyacrylamide increased with increasing [monomer] and decreased with increasing [catalyst]. The effect of pH was also studied in the pH range 2.22 to 1.44.  相似文献   

17.
The aqueous polymerization of acrylonitrile initiated by an acidified bromate–thiourea redox system has been studied under nitrogen atmosphere. The rate of polymerization is independent of thiourea concentration over the range 2–9 × 10?3M and reaches maximum at 9 × 10?3M. The rate varies linearly with [monomer]. The initial rate of polymerization as well as the maximum conversion increases within the range of 4–22.5 × 10?3M KBrO3, but beyond 22.5 × 10?3M the rate of polymerization decreases. The initial rate and the limiting conversion increases with increasing polymerization temperature in the range 30–45°C; and beyond 45°C they decrease. The effect of certain neutral salts, water-soluble solvents, and micelles of cationic, anionic, and nonionic surfactants on the rate of polymerization has been investigated.  相似文献   

18.
The polymerization of acrylamide (I) initiated by a potassium bromate—thioglycollic acid (TGA) redox pair has been studied in aqueous media at 30°C in a nitrogen atmosphere. The reaction order related to the catalyst concentration (KBrO3) was 0.501, which indicated a bimolecular mechanism for the termination reaction in the range of 1.0?3.0 × 10?3 mole/liter. The polymerization rate varied linearly with monomer (I) concentration over the range of 1.0?5.0 × 10?2 mole/liter. A typical behavior is observed, however, by changing the thioglycollic acid concentration. The initial rate of polymerization (Ri), as well as the maximum conversion, increases by increasing the temperature to 30°C, but the initial rate and the maximum conversion falls as the temperature rises above 30°C. The overall energy of activation is 6.218 kcal in the temperature range of 20–40°C. Water-miscible organic solvents, namely, CH3OH and C2H5OH, depress the rate of polymerization.  相似文献   

19.
The aqueous polymerization of acrylamide initiated by the acidified potassium permanganate/mercaptosuccinic acid redox system was studied at 35 ± 0.2°C in nitrogen. In the studied range of activator concentration (2.0 × 10?3 to 6.25 ± 10?3 mole/liter) the polymerization rate remains unaffected. The initial rate of polymerization varies linearly with KMnO4 and acrylamide concentrations in the studied range. The activation energy was found to be 6.61 kcal/mole (27.63 kJ/mole) in the temperature range of 30–50°C. The molecular weight of polyacrylamide was found to be independent of [KMnO4] but increased with increasing monomer concentration. The effect of DMF on polymerization rate and molecular weight was also investigated.  相似文献   

20.
The aqueous polymerization of methacrylic acid (MAA) initiated by a Ce4+ -glycolic acid (GA) system was observed in a sulfuric acid medium at 35 ± 0.2°C in a nitrogen atmosphere. The rate of monomer disappearance was proportional to [MAA]1 and the rate of ceric ion disappearance was proportional to [GA][Ce4+]. An increase in the reaction temperature from 30 to 45°C raised the rate and the overall activation energy was 63 kJ/mol. The molecular weight increased with a rise in [MAA] and a reduction in [Ce4+]. The effect of varying [H2SO4] was also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号