首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Homogeneous polymerization of methacrylamide initiated by the ceric ammonium sulfate-citric acid (CA) redox pair has been investigated and reported at 35 ± 0.2°C under nitrogen atmosphere. The initiation was caused by the free radical generated by the decomposition of the complex formed between ceric ion and citric acid. The rate of monomer disappearance was found to be proportional to [CA]0.4, [Ce0.4+]0.65, and [Monomer]1 The rate of ceric ion disappearance was directly proportional to the ceric ion concentration but independent of the monomer concentration. The initial rate was independent of [H2SO4]. The activation energy of the system was found to be 21.4 kJ/mol.  相似文献   

2.
Polymerization of acrylamide monomer, initiated by the redox system involving acidified ceric ammonium sulfate and 2-mercaptoethanol (2-ME) was carried out in an aqueous medium at 25° C. White, rigid polyacrylamide, isolated under controlled experimental conditions, showed a molecular weight of 1.5 × 104 from viscosity measurements. The rate of monomer (M) conversion to polymer was found to be proportional to [M]1.5, [2-ME]0.5, and [Ce(IV)]0.4. Further, the rate of disappearance of ceric ion was observed to be directly proportional to [2-ME] and independent of [M] in the range of 0.16–0.48 mole/liter. The explanation of the above proportionalities is given in terms of a proposed reaction mechanism. Values of the usual rate constants, kr, k0/kt and kt./kp ½ have been computed.  相似文献   

3.
The kinetics of acrylamide polymerization has been investigated by employing cericammoniumnitrate-2-chloroethanol redox pair under nitrogen atmosphere at 30 ± 1°C. The rate of monomer disappearance is directly proportional to the concentration of 2-chloroethanol (1.0 × 10?2 ? 10.0 × 10?2 mol. dm?3) and is inversely proportional to the ceric ion concentration (2.5 × 10?3 ? 10.0 × 10?3 mol. dm?3) but shows square dependence to the concentration of monomer (5.0 × 10?2 ? 25.0 × 10?2 mol. dm?3). The rate of ceric ion disappearance is directly proportional to the initial concentration of ceric ion and 2-chloroethanol but independent of acrylamide concentration. The viscometric average molecular weight (M v) decreases on increasing the concentration of ceric ion and increases on increasing the concentrations of acrylamide and 2-chloroethanol. A tentative mechanism has been proposed.  相似文献   

4.
The aqueous polymerization of acrylamide initiated by the glycolic acid/Ce4+ redox system was studied in sulfuric acid medium at 35 ± 0.2°C under a nitrogen atmosphere. The initiation was carried out by the free radical generated in the decomposition of the complex formed between the oxidant and the reductant. The monomer disappearance was found to be proportional to [GA]0,89[Ce4+]0.57[M]1.0, and the rate of ceric ion disappearance was found to be directly proportional to [Ce4+] and [GA] but independent of [M]. The activation energy of the system was found to be 7.21 kcal/deg/mol. The molecular weight of polyacrylamide increased with increasing [monomer] and decreased with increasing [catalyst]. The effect of pH was also studied in the pH range 2.22 to 1.44.  相似文献   

5.
The aqueous polymerization of methacrylic acid (MAA) initiated by a Ce4+ -glycolic acid (GA) system was observed in a sulfuric acid medium at 35 ± 0.2°C in a nitrogen atmosphere. The rate of monomer disappearance was proportional to [MAA]1 and the rate of ceric ion disappearance was proportional to [GA][Ce4+]. An increase in the reaction temperature from 30 to 45°C raised the rate and the overall activation energy was 63 kJ/mol. The molecular weight increased with a rise in [MAA] and a reduction in [Ce4+]. The effect of varying [H2SO4] was also studied.  相似文献   

6.
The polymerization of acrylamide (M) in aqueous sulfuric acid medium initiated with ceric ammonium sulfate–malic acid redox pair was investigated at 35 ± 0.2°C under nitrogen atmosphere. The initiation was caused by the free radical generated by the decomposition of the complex formed between ceric ion and malic acid (MA). The rate of monomer disappearance was proportional to the first power of malic acid, ceric ion, and monomer concentrations at lower ceric ion concentrations. However, at higher ceric ion concentrations the rate was independent of [Ce(IV)]. The rate of ceric ion disappearance was proportional to [MA] and [Ce(IV)] but independent of [M] at lower ceric ion concentrations. The activation energy was found to be 57.74 kJ/mol. Sulfuric acid retarded the reaction. Molecular weights increased with increasing [M] and decreasing [Ce(IV)].  相似文献   

7.
The kinetics of the graft polymerization of acrylamide initiated by ceric nitrate—dextran polymeric redox systems was studied primarily at 25°C. Following an initial period of relatively fast reaction, the rate of polymerization is first-order with respect to the concentrations of monomer and dextran and independent of the ceric ion concentration. The equilibrium constant for ceric ion—dextran complexation K is 3.0 ± 1.6 l./mole, the specific rate of dissociation of the complex, kd, is 3.0 ± 1.2 × 10?4 sec.?1, and the ratio of polymerization rate constants, kp/kt, is 0.44 ± 0.15. The number-average degree of polymerization is directly proportional to the ratio of the initial concentrations of monomer and ceric ion and increases exponentially with increasing extent of conversion. The initial rapid rate of polymerization is accounted for by the high reactivity of ceric ion with cis-glycol groups on the ends of the dextran chains. The polymerization in the slower period that follows is initiated by the breakdown of coordination complexes of ceric ions with secondary alcohols on the dextran chain and terminated by redox reaction with uncomplexed ceric ions.  相似文献   

8.
This paper describes the kinetics of the ceric ion-initiated graft co-polymerization of vinyl acetate-acrylonitrile to poly(vinyl alcohol). The graft copolymerization rate Rp was found to be first order with respect to the total concentration of the comonomer mixture [M], the concentration of vinyl alcohol repeating units [PVA], and the mole fraction of vinyl acetate in the comonomer feed mixture. Rp was independent of cerous ion. The grafting rate was independent of ceric ion above a ceric concentration of 0.0020 M but first order in ceric ion below that concentration. Rp initially increased rapidly with [H+] to a maximum and then decreased and levelled off at hgher [H+]. The rate of ceric ion disappearance was first order in [PVA], independent of [MI, and increased with increasing [H+] with a leveling off at high [H+]. A reaction mechanism.  相似文献   

9.
The aqueous heterogeneous polymerization of methyl methacrylate (MMA) initiated by the Ce4+-glycolic acid (GA) redox system was studied at 35 × 0.2°C under a nitrogen atmosphere. The rate of monomer disappearance was proportional to [MMA]1[GA]1[Ce4+]°, and the rate of eerie ion disappearance was found to be directly proportional to [Ce4+] and [GA] but independent of [MMA]. The activation energy was found to be 34 kJ/mol. The molecular weight of polymethyl methacrylate increased with increasing [MMA] and decreased with increasing [oxidant]. The effect of increasing [H2SO4] on polymerization was also studied. The results are compared with those obtained for the aqueous homogeneous polymerization of acrylamide with the same redox pair.  相似文献   

10.
Polymerization of methyl methacrylate was carried out in aqueous nitric acid in the temperature range 26–40°C, with the redox initiator system ceric ammonium nitrate–isopropyl alcohol. A short induction period was observed, as well as the attainment of a limiting conversion, and the total ceric ion consumption with reaction time. The reaction orders were 1/2 and 3/2 with respect to the IPA and monomer concentration, respectively, within the range (3–5) × 10?3M of Ce(IV). But at lower Ce(IV) concentration (≤ 1 × 10?3M), the order with respect to monomer and Ce(IV) changed to 1 and 1/2, respectively. The rate of ceric ion disappearance was first order with respect to Ce(IV) concentration and (RCe)?1 was proportional to [IPA]?1. Both the rate of polymerization and the rate of ceric ion consumption increase with rise in temperature. The average-molecular weight can be controlled by variations in IPA, Ce(IV), and monomer concentrations, and in temperature. A kinetic scheme involving oxidation of IPA by Ce(IV) via complex formation, whose decomposition gives rise to a primary radical, initiation, propagation, and termination of the polymeric radicals by bimolecular interaction is proposed. An oxidative termination of primary radicals by Ce(IV) is also included.  相似文献   

11.
Polymerization of acrylonitrile was investigated using ceric ion-organic sulfur compounds reducing agent systems. The organic sulphur compounds used as the reductants are, thiourea, thioacetamide, 2-amino ethanethiol, cysteine, and thioglycolic acid. The rates of polymerization were measured within the temperature range of 25 to 40 °C. The initiation was by the radical produced from Ce4+-sulphur compounds reaction. The rate of monomer disappearance was proportional to [M]1.5, [S]0.5 and the rate of ceric disappearance was directly proportional to [S] and [Ce4+]. A kinetic scheme involving the initiation by the primary radical and termination of the growing polymer radicals by the mutual type has been suggested and the kinetic percentage have been evaluated.  相似文献   

12.
The redox-initiated polymerization of methyl methacrylate (MMA) by the Ce(IV)-malic acid system has been carried out in aqueous medium under an inert atmosphere. The rate of polymerization was found to be proportional to [MMA]3/2 [MA]1/2 [Ce(IV)]1/2 and the rate of ceric ion disappearance was proportional to [Ce(IV)] but independent of [MMA]. The rate increased linearly up to a certain range of [MA], above which it remained constant. Increasing [H2SO4] decreased the rate. The activation energy was found to be 57.44 kJ/mol.  相似文献   

13.
Polymerization of the monomers, methyl acrylate (MA) and methyl methacrylate (MMA) was carried out in sulfuric acid medium at 15°C. With the redox initiator system, ceric ammonium sulfate–malonic acid. There was no induction period, and a steady state was attained in a short time. There was found to be no polymerization even after 1 hr. in the absence of the reducing agent R. The initiation was by the radical produced from the Ce4+–malonic acid reaction. The rate of monomer disappearance was proportional to [M]1.5, [R]0.5, and [Ce4+]0.3–0.5, and the rate of ceric disappearance was directly proportional to [R] and [Ce4+]. Chain lengths of the polymers were directly proportional to [M] and inversely to [R]1/2 and [Ce4+]1/2. The experimental results were explained by a kinetic scheme involving the following steps: (a) oxidation of the substrate to give the primary radical which reacts with Ce4+ to give the products, (b) initiation by the primary radical, (c) propagation, and (d) termination of the growing polymer radicals by the mutual type. For the polymerization of acrylonitrile (AN) by the redox system, ceric ammonium sulfate–cyclohexanone (CH), in sulfuric acid at 15°C., the scheme was modified to include linear type of termination by Ce4+, along with the mutual termination to explain the results especially under conditions with [Ce4+] ≥ [CH].  相似文献   

14.
The effect of various substituted amines on the polymerization of acrylonitrile initiated by ceric ammonium sulfate has been studied in aqueous solution at 30°C. It was found that the secondary and tertiary amines considerably increased the rate of polymerization, whereas the primary amines seemed to have no effect at all. From the kinetic studies it was found that the overall polymerization rate Rp is independent of ceric ion concentration and can be expressed by the equation: Rp = k1 [amine] [monomer] + k2[monomer]2, where k1 and k2 are constants (involving different rate constants). The accelerating effect of the amines was attributed to a redox reaction between the ceric ion and the amine involving a single electron transfer, the relative activity of the different amines being thus dependent on the relative electron-donating tendency of the substituents present in the amine. The mechanism of the polymerization is discussed on the basis of these results, and various kinetic constants are evaluated.  相似文献   

15.
Acrylamide graft copolymerization onto poly(3-O-methacryloyl D -glucose) (PMG) as a backbone was performed by the ceric ion method. The number of polyacrylamide (PAM) chains grafted was dependent upon the concentration ratio of the redox catalyst system at constant acid concentration and increased in proportion to the ceric ion concentration. A maximum number of grafts obtained, for example, was 29 onto PMG (DP = 244) under the conditions [Ce4+]/[PMG] = 1/5, [H+] = 1.0 × 10?2 mole/l. In other words, the graft frequency was 12 per 100 monomer units of PMG. Such a high frequency of the grafts was, however, greatly decreased when the acid concentration was increased. Characteristics of the highly branched structure were revealed by the relationship between intrinsic viscosity and graft frequency, which showed a downward curvature with the increasing graft frequency. Influences of acid and ceric ion concentrations on the copolymerization were kinetically evaluated. The rate of polymerization was found to be first-order with respect to ceric ion and proportional to the square of the reciprocal acid concentration. The result suggests that the graft frequency is dependent upon the rate of polymerization.  相似文献   

16.
The polymerization of acrylonitrile (M) initiated by the Ce(IV)-propane-1,2-diol (R) redox system has been studied in aqueous sulphuric acid under nitrogen in the temperature range 30 to 40°. The rate of polymerization is proportional to [M]2, [R] and [Ce(IV)]?1 and the rate of ceric ion disappearance is proportional to [R], [Ce(IV)]. The effects of certain salts, acid, solvent and temperature on both rates have been investigated. A kinetic scheme has been proposed, and various rate and energy parameters evaluated.  相似文献   

17.
The kinetics and mechanism of thermal polymerization of acrylonitrile initiated by Mn(III) pyrophosphate — poly(ethylene glycol) (PEG, molecular weight 6000) redox system in aqueous sulfuric acid medium was studied in the temperature range 30–60°C. The overall rates of polymerization and the disappearance of Mn3+ were determined. The polymerization was initiated by the organic free radical produced from the Mn3+-PEG reaction and the termination was by the metal ions. The rate of polymerization of acrylonitrile was found to be directly proportional to the square of the monomer concentration and first power of PEG concentration, and inversely proportional to the concentration of Mn3+. The rate of manganic ion disappearance was found to be directly proportional to manganic ion concentration and PEG concentration, and independent of the monomer concentration. Based on these observations, a plausible reaction scheme was suggested and suitable kinetic expressions were evaluated.  相似文献   

18.
The kinetics of the aqueous polymerization of methyl methacrylate by a ceric-thiourea initiator system in moderately acid solution (pH 2.15) was studied. The rate of polymerization was proportional to 0.41 power of ceric concentration, 0.32 power of thiourea concentration, and 1.18 power of monomer concentration. The degree of polymerization was smaller than expected from the rate of polymerization. Initiation efficiency was less than one. There was no evidence of any ceric ion termination in the concentration range of 2.50 × 10?4–2.00 × 10?3M studied. The results are explained in terms of partial primary radical termination; the principal mode of termination, however, was bimolecular.  相似文献   

19.
Abstract

Polymerizations of methyl methacrylate (MMA) and acrylonitrile (AN) were carried out in aqueous nitric acid at 30°C with the redox initiator system ammonium ceric nitrate-ethyl cellosolve (EC). A short induction period was observed as well as the attainment of a limiting conversion for polymerization reactions. The consumption of ceric ion was first order with respect to Ce(IV) concentration in the concentration range (0.2–0.4) × 10?2 M, and the points at higher and lower concentrations show deviations from a linear fit. The plots of the inverse of pseudo-first-order rate constant for ceric ion consumption, (k 1)?1 vs [EC]?1, gave straight lines for both the monomer systems with nonzero intercepts supporting complex formation between Ce(IV) and EC. The rate of polymerization increases regularly with [Ce(IV)] up to 0.003 M, yielding an order of 0.41, then falls to 0.0055 M and again shows a rise at 0.00645 M for MMA polymerization. For AN polymerization, R p shows a steep rise with [Ce(IV)] up to 0.001 M, and beyond this concentration R p shows a regular increase with [Ce(IV)], yielding an order of 0.48. In the presence of constant [NO? 3], MMA and AN polymerizations yield orders of 0.36 and 0.58 for [Ce(IV)] variation, respectively. The rates of polymerization increased with an increase in EC and monomer concentrations: only at a higher concentration of EC (0.5 M) was a steep fall in R p observed for both monomer systems. The orders with respect to EC and monomer for MMA polymerization were 0.19 and 1.6, respectively. The orders with respect to EC and monomer for AN polymerization were 0.2 and 1.5, respectively. A kinetic scheme involving oxidation of EC by Ce(IV) via complex formation, whose decomposition gives rise to a primary radical, initiation, propagation, and termination of the polymeric radicals by biomolecular interaction is proposed. An oxidative termination of primary radicals by Ce(IV) is also included.  相似文献   

20.
The Ce(IV)-ion induced grafting on cellulose from the binary mixture of acrylonitrile-methylacrylate has been investigated in heterogeneous and acidic conditions at 25 ± 0. 1°C. Various grafting parameters were evaluated as a function of molarity, feed composition, reaction time, and concentration of ceric ion at constant concentration of nitric acid in the feed. The higher fraction of acrylonitrile in the grafted chains than the feed has indicated the synergistic effect of methylacrylate taken in the feed along with acrylonitrile. IR and elemental analysis for nitrogen contents in the synthesized copolymers were used to determine the composition of the grafted copolymers. The reactivity ratios of acrylonitrile and methylacrylate have been determined by the Mayo and Lewis method and are found to be 1.45 and 0.9, respectively. The grafting parameters have shown increasing trends on varying feed composition (fAN) from 0.25 to 0.80 and varying monomer concentration from 0. 6 to 5 4 mol dm?3. The number of grafted moles of synthetic polymer (Ng) on cellulose were found to be dependent on molarity, feed composition, and ceric ion concentration. The experimental results have clearly indicated that maximum fraction of the feed was consumed in the formation of grafted copolymer chains in comparison to the homocopolymers and homopolymers. Estimation of ceric ion disappearance as a function of reaction time has clearly suggested that grafting on cellulose is initiated by the reactive sites generated through hydrogen ion abstraction by single electron transfer process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号