首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extensive thermal and relaxational behavior in the blends of linear low-density polyethylene (LLDPE) (1-octene comonomer) with low-density polyethylene (LDPE) and high-density polyethylene (HDPE) have been investigated to elucidate miscibility and molecular relaxations in the crystalline and amorphous phases by using a differential scanning calorimeter (DSC) and a dynamic mechanical thermal analyzer (DMTA). In the LLDPE/LDPE blends, two distinct endotherms during melting and crystallization by DSC were observed supporting the belief that LLDPE and LDPE exclude one another during crystallization. However, the dynamic mechanical β and γ relaxations of the blends indicate that the two constituents are miscible in the amorphous phase, while LLDPE dominates α relaxation. In the LLDPE/HDPE system, there was a single composition-dependent peak during melting and crystallization, and the heat of fusion varied linearly with composition supporting the incorporation of HDPE into the LLDPE crystals. The dynamic mechanical α, β, and γ relaxations of the blends display an intermediate behavior that indicates miscibility in both the crystalline and amorphous phases. In the LDPE/HDPE blend, the melting or crystallization peaks of LDPE were strongly influenced by HDPE. The behavior of the α relaxation was dominated by HDPE, while those of β and γ relaxations were intermediate of the constituents, which were similar to those of the LLDPE/HDPE blends. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1633–1642, 1997  相似文献   

2.
Classical linear low density polyethylenes (LLDPEs) are copolymers of ethylene and 1‐octene or 1‐hexene, respectively. In the past, other 1‐olefins have been tested as comonomers but the resulting LLDPEs were never commercialized as large scale products. The present study focuses on the use of 1‐heptene as an interesting comonomer for the synthesis of LLDPE. For a comparison of the molecular structure and the physical properties of 1‐heptene‐ and 1‐octene‐based LLDPEs, five Ziegler–Natta LLDPEs of varying comonomer contents based on 1‐heptene and 1‐octene, respectively, were acquired and analysed using advanced methods. The comonomer contents of the resins were between 0.35 and 6.4 mol %. Crystallization‐based techniques revealed similar bimodal distributions that are due to the formation of copolymer and polyethylene homopolymer fractions. The compositional distribution of the copolymers was studied by high‐temperature (HT) HPLC and HT‐2D‐LC. The analytical results indicate similar chemical heterogeneities and molar mass distributions of the two sets of LLDPE up to a comonomer content of 3 mol %. Similar to the molecular structure, the physical properties of the materials are quite similar. At comonomer contents of ≥3 mol % differences between the two sets of samples are seen that are attributed to differences in the abilities of 1‐heptene and 1‐octene in disrupting the crystal arrangements of the polymer chains in solid state. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 962–975  相似文献   

3.
This article extends the composition of linear low‐density polyethylene (LLDPE) resins to that containing 1‐decene comonomer units, and examines the effects of comonomer (type and concentration) to copolymerization and physical properties of LLDPE resins. CGC metallocene technology, under high temperature and high pressure (industrial reaction condition), was used to prepare three types of well‐defined LLDPE copolymers containing 1‐hexene, 1‐octene, and 1‐decene units. They show high molecular weight with narrow molecular weight and composition distributions, comparative catalyst activities, and similar comonomer effects. However, 1‐decene seems to exhibit significantly higher comonomer incorporation than 1‐hexene and 1‐octene, which may be associated with its high boiling point, maintaining liquid phase during the polymerization. The resulting LLDPE copolymers show a clear structure–property relationship. Melting temperature and crystallinity of the copolymer are governed by mole % of comonomer. The increase of branch density linearly decreases the LLDPE melting point and exponential reduction of its crystallinity. On the other hand, the density of the copolymer decreases with the increase of comonomer weight %, which shows a sharp linear relationship in the low comonomer content. The tensile properties of 1‐decene‐based LLDPE are very comparative with those of the commercial LLDPE resins with similar compositions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 639–649, 2007  相似文献   

4.
Melting and crystallization phenomena in blends of a linear low-density polyethylene (LLDPE) (ethylene butene-1 copolymer) with a conventional low-density (branched) polyethylene (LDPE) are explored with emphasis on composition by differential scanning calorimetry (DSC) and light scattering (LS). Two endotherms are evident in the DSC studies of the blends, which suggests the formation of separate crystals. Light-scattering studies indicate that the blend system is predominantly volume filled by the LLDPE component whereby the LDPE component crystallizes as a secondary process within the domain of the LLDPE spherulites. In contrast to those of the LLDPE/HDPE blends, the mechanical and optical relaxation behavior of the LLDPE/LDPE blends are dominated by the LLDPE component in the vicinities of γ and β regions, whereas the trend reverses at high temperature α regions. This observation is accounted for on the basis of the relative restrictions imposed by the deformation of spherulites (which are primarily made up of the LLDPE component) at different time scales.  相似文献   

5.
固相法氯化聚乙烯对PVC/LLDPE共混体系性能和形态的影响   总被引:2,自引:0,他引:2  
何培新  黄鹤 《应用化学》1996,13(5):52-55
采用固相法氯化聚乙烯(CPE)对聚氯乙烯/线型低密度聚乙烯(PVC/LLDPE)共混体系进行增容改性。扫描电子显微镜、透射电子显微镜、动态力学分析和力学性能测试结果表明,CPE对PVC/LLDPE共混体系具有很好的增容作用。  相似文献   

6.
The influences of the molar mass (low, medium, and high) and content of poly(vinyl alcohol) (PVOH) dispersed by melt-blending in an ethylene vinyl alcohol (EVOH) copolymer on the morphology, microstructure, thermal, mechanical, and oxygen barrier properties were investigated. Multilayer films with external low-density polyethylene layers and inner EVOH/PVOH blend layer and respective monolayer films were elaborated and characterized. EVOH/PVOH blends exhibited a good compatibility because of the initial presence of PVOH segments in EVOH. The detailed quantitative analysis of the morphology performed for all blends showed that the finest dispersion was obtained with the PVOH with the lowest molar mass. The properties of the films as a function of the PVOH content and its molar mass were determined herein. Significant improvement of barrier properties was obtained at moderated water activities (up to aw = 0.6) by using the PVOH with the lowest molar mass. Compared to the neat EVOH material, the oxygen permeability coefficients decreased by a factor 2 by adding 15 vol% PVOH while the thermal and mechanical properties remained similar.  相似文献   

7.
Recycled poly(ethylene terephthalate) (R‐PET) was blended with four types of polyethylene (PE), linear low density polyethylene (LLDPE; LL0209AA, Fs150), low density polyethylene (LDPE; F101‐1), and metallocene‐LLDPE (m‐LLDPE; Fv203) by co‐rotating twin‐screw extruder. Maleic anhydride‐grafted poly(styrene‐ethylene/butyldiene‐styrene) (SEBS‐g‐MA) was added as compatibilizer. R‐PET/PE/SEBS‐g‐MA blends were examined by scanning electron microscopy (SEM), differential scanning calorimeter (DSC), dynamic mechanical analysis (DMA), and mechanical property testing. The results indicated that the morphology and properties of the blends depended to a great extent on the miscibility between the olefin segments of SEBS‐g‐MA and PE. Due to the proper interaction between SEBS‐g‐MA and LDPE (F101‐1), most SEBS‐g‐MA, located at the interface between two phases of PET and LDPE to increase the interfacial adhesion, lead to better mechanical properties of R‐PET/LDPE (F101‐1) blend. However, both the poor miscibility of SEBS‐g‐MA with LLDPE (LL0209AA) and the excessive miscibility of SEBS‐g‐MA with LLDPE (Fs150) and m‐LLDPE (Fv203) reduced the compatibilization effect of SEBS‐g‐MA. DSC results showed that the interaction between SEBS‐g‐MA and PE obviously affected the crystallization of PET and PE. DMA results indicated that PE had more influence on the movement of SEBS‐g‐MA than PE did. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
以通过开环易位聚合、加氢反应和原子转移自由基聚合技术结合制备的聚乙烯-g-聚苯乙烯(PE-g-PS)作为增容剂,研究了加入不同PS支链长度的PE-g-PS对于线性低密度聚乙烯/聚苯乙烯(LLDPE/PS)共混物的机械性能和发泡行为的影响。 以典型组成m(LLDPE):m(PS)=70:30共混物为例,考察了PE-g-PS对共混物拉伸性能的影响。 相对于二元共混物,增容剂的加入使得断裂伸长率、拉伸强度和屈服强度皆提高,且含长PS支链的增容体系提高更明显。 采用超临界CO2釜式发泡工艺,考察了PE-g-PS中PS支链长度对共混物发泡行为的影响。 结果表明,相对于短PS支链体系,加入PE-g-PS1.59k(PS相对分子质量为1590)后的泡孔结构更加均一,完全没有“缝隙”形貌的出现。 当发泡温度降至80 ℃时,即使存在LLDPE发泡空间限制作用(LLDPE无法发泡),加入支链长度更长的PE-g-PS1.59k后泡孔分布也更加均一。  相似文献   

9.
Blends of two or more ethylene–styrene (ES) copolymers that differed primarily in the comonomer composition of the copolymers were studied. Available thermodynamic models for copolymer–copolymer blends were utilized to determine the criteria for miscibility between two ES copolymers differing in styrene content and also between ES copolymers and the respective homopolymers, polystyrene and linear polyethylene. Model estimations were compared with experimental observations based primarily on melt‐blended ES/ES systems, particularly via the analysis of the glass‐transition (Tg ) behavior from differential scanning calorimetry (DSC) and solid‐state dynamic mechanical spectroscopy. The critical comonomer difference in the styrene content at which phase separation occurred was estimated to be about 10 wt % for ES copolymers with a molecular weight of about 105 and was in general agreement with the experimental observations. The range of ES copolymers that could be produced by the variation of the comonomer content allowed the study of blends with amorphous and semicrystalline components. Crystallinity differences for the blends, as determined by DSC, appeared to be related to the overlapping of the Tg of the amorphous component with the melting range of the semicrystalline component and/or the reduction in the mobility of the amorphous phase due to the presence of the higher Tg of the amorphous blend component. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2976–2987, 2000  相似文献   

10.
A blend system of linear low-density polyethylene (LLDPE) (ethylene butene-1 copolymer) with high-density (linear) polyethylene (HDPE) is investigated by differential scanning calorimetry (DSC), wide-angle x-ray diffraction (WAXD), small-angle x-ray scattering (SAXS), Raman longitudinal-acoustic-mode spectroscopy (LAM), and light scattering (LS). For slowly cooled or quenched samples, one single endotherm is evident in the DSC curve which depends on the composition. No separate peaks are observed in the WAXD, SAXS, Raman-LAM, and LS studies on the LLDPE/HDPE blends. This observation along with the fact that no peak broadening is observed suggests that these peaks are associated with the presence of a single component. In no case did we see double peaks or a broadened peak that might be associated with two closely spaced unresolved peaks. This suggests that segregation has not taken place at the structural levels of crystalline, lamellar, and spherulitic textures. A single-step drop in the scattered intensity (IHv) as a function of temperature is seen in the LS studies. It is therefore concluded that cocrystallization between the LLDPE and HDPE components occurs. The mechanical and optical α, β, and γ relaxations of these blends are explored by dynamic birefringence. The 50/50 blend displays the intermediate relaxation behavior between those of the components in all α, β, and γ regions. This observation is reminiscent of the characteristic of the typical miscible blends.  相似文献   

11.
Ethylene copolymers exhibit a broad range of comonomer distributions. Thermal fractionation was performed on different grades of copolymers in a differential scanning calorimeter (DSC). Subsequent melting scans of fractionated polyethylenes provided a series of endothermic peaks each corresponding to a particular branch density. The DSC melting peak temperature and the area under each fraction were used to determine the branch density for each melting peak in the thermal fractionated polyethylenes. High-density polyethylene (HDPE) showed no branches whereas linear low-density polyethylenes (LLDPE) exhibited a broad range of comonomer distributions. The distributions depended on the catalyst and comonomer type and whether the polymerisation was performed in the liquid or gas phase. The DSC curves contrast the very broad range of branching in Ziegler—Natta polymers, particularly those formed in the liquid phase, with those formed by single-site catalysts. The metallocene or single-site catalysed polymers showed, as expected, a narrower distribution of branching, but broader than sometimes described. The ultra low-density polyethylenes (ULDPE) can be regarded as partially melted at room temperature thus fractionation of ULDPE should continue to sub-ambient temperatures. The thermal fractionation is shown to be useful for determining the crystallisation behaviour of polyethylene blends.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

12.
以乙烯-丙烯酸共聚物(EAA)为增容剂, 研究了它在线性低密度聚乙烯(LLDPE)/聚环氧乙烷(PEO)共混物中的增容作用及其增容机理。采用电子显微镜(SEM)、动态力学分析(DMA)、DSC和红外光谱(IR)对共混物形态及其微观结构进行了表征。结果表明, EAA对LLDPE/PEO共混物有一定的增容作用; 其增容机理为: EAA和LLDPE两者的非晶区部分相容, 而EAA分子中的羧基与PEO分子中的醚氧基相互作用形成了分子间氢键。  相似文献   

13.
Miscibility behavior and rheological properties with mechanical spectroscopy study of both poly(3-hydroxybutyrate) (PHB)/poly(ethylene oxide) (PEO) and biodegradable synthetic aliphatic polyester (BDP)/linear low density polyethylene (LLDPE) were investigated. Blends of BDP with LLDPE were immiscible, showing two separate Tg values in all compositions; whereas blends of PHB with PEO were miscible, showing a single Tg in the whole range of compositions. However, the shear viscosities of both synthetic and biosynthetic blend systems decrease with increasing shear rate. When a modified Cole-Cole plot of the blend system is further considered, the logG′-logG” plot shows little sensitivity to a variation in both LLDPE composition for synthetic BDP and PEO composition for biosynthetic PHB. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV)) random copolymers were also investigated.  相似文献   

14.
The compatibilization of blends of polyamide‐6 (PA6) with linear low density polyethylene (LLDPE) and of poly(ethylene terephthalate) (PET) with high density polyethylene (HDPE), by functionalization of the polyethylenes with oxazoline groups was investigated. Chemical modification of LLDPE and HDPE was carried out by melt free radical grafting with ricinoloxazoline maleinate. Blends preparation was made either with a two‐steps procedure comprising functionalization and blending, and in a single step in which the chemical modification of polyethylene with the oxazoline monomer was realized in situ, during blending. The characterization of the products was carried out by FTIR spectroscopy and scanning electron microscopy (SEM). The rheological and mechanical properties of the blends were also investigated. The results show that functionalization of the polyethylenes can be achieved by melt blending with ricinoloxazoline maleinate even in the absence of free radical initiators. The compatibilization of the blends enhances the dispersion of the minor phase significantly, increases the melt viscosity, and improves the mechanical properties. The one‐step preparation of the compatibilized blends was also found to be effective, and is thought to be even more promising in view of commercial application.  相似文献   

15.
Three types of low‐density polyethylene materials were investigated with respect to the influence of the molecular architecture on the mechanical and use properties of blown films. The materials were a branched polyethylene synthesized by free‐radical polymerization under high‐pressure (HP‐LDPE), a linear ethylene–hexene copolymer (ZN‐LLDPE) produced by low‐pressure Ziegler–Natta catalysis, and an ethylene–hexene copolymer (M‐LLDPE) from metallocene catalysis. The extrusion and blowing conditions were identical for the three materials, with a take‐up ratio of 12 and a blow‐up ratio of 2.5. The blown films displayed a decreasing puncture resistance in the order M‐LLDPE, ZN‐LLDPE, and HP‐LDPE. In parallel, the tear resistance of the films became increasingly unbalanced in the same order of the polymers. The morphological study showed an increased anisotropy of the films in the same polymer order, the crystalline lamellae being increasingly oriented normal to the take‐up direction. This texturing caused a detrimental effect on the mechanical properties of the films, notably increasing the capacity for crack propagation. The phenomenon was ascribed to the kinetics of chain relaxation in the melt that governed the ability of the chains to recover an isotropic state from the flow‐induced stretching before crystallization. The puncture resistance was examined in terms of both texture and strain‐hardening capabilities. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 327–340, 2003  相似文献   

16.
Two grades of low density polyethylene (LDPE) were blended with polyamide-6 (PA) in the 75/25 and 25/75 wt/wt ratios and shaped into ribbons with a Brabender single screw extruder. An ethylene-acrylic acid copolymer (EAA) was used in the 2 phr concentration as a compatibilizer precursor (CP). The morphology of the ribbons and its evolution during high temperature annealing were investigated by scanning electron microscopy (SEM). The results confirmed that EAA does actually behave as a reactive compatibilizer for the LDPE/PA blends. In fact, in the presence of EAA, the interfacial adhesion is improved, the dispersion of the minor phase particles is enhanced and their tendency toward fibrillation is increased, especially for the blends with the higher molar mass LDPE grade. The mechanical properties of the latter blends were found to be considerably enhanced by the addition of EAA, whereas the improvement was relatively modest for the blends with the lower molar mass LDPE. The fracture properties of double end notched samples of the ribbons prepared with the blends containing the lower molar mass LDPE grade were also studied. It was shown that, despite of the increased interfacial adhesion caused by the presence of EAA, the latter plays a measurable positive effect on the fracture properties only for the blends with LDPE as the matrix.  相似文献   

17.
含碱性功能基聚合物反应性增容体系的研究胡静,张邦华,宋谋道,周庆业(南开大学高分子化学研究所,天津,300071)关键词聚合物共混,反应性聚合物,碱性功能基,反应性增容通过共混单体方法制备聚合物“合金”是聚合物高性能化、开发材料新品种的主要方法。对于...  相似文献   

18.
Compatibilization of blends of linear low-density polyethylene (LLDPE) and polystyrene (PS) with block copolymers of styrene (S) and butadiene (B) or hydrogenated butadiene (EB) has been studied. The morphology of the LLDPE/PS (50/50) composition typically with 5% copolymer was characterized primarily by scanning electron microscopy (SEM). The SEB and SEBS copolymers were effective in reducing the PS domain size, while the SB and SBS copolymers were less effective. The noncrystalline copolymers lowered the tensile modulus of the blend by as much as 50%. Modulus calculations based on a coreshell model, with the rubbery copolymer coating the PS particle, predicted that 50% of the rubbery SEBS copolymer was located at the interface compared to only 5–15% of the SB and SBS copolymers. The modulus of blends compatibilized with crystalline, nonrubbery SEB and SEBS copolymers approached Hashin's upper modulus bound. An interconnected interface model was proposed in which the blocks selectively penetrated the LLDPE and PS phases to provide good adhesion and improved stress and strain transfer between the phases. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
The effect of time-temperature treatment on morphology of polyethylene-polypropylene (PE-PP) blends wasstudied to establish a relationship between thermal history, morphology and mechanical properties. Polypropylene (PP)homopolymers were used to blend with various polyethylenes (PE), including high density polyethylene (HDPE), lowdensity polyethylene (LDPE), linear low density polyethylene (LLDPE), and very and ultra low density polyethylene(VLDPE and ULDPE). The majority of the blends were prepared at a ratio of PE:PP = 80:20, while blends of PP and LLDPEwere prepared at various compositions. Thermal treatment was carried out at temperatures between the crystallizationtemperatures of PP and PEs to allow PP to crystallize first from the blends. On cooling further, PE crystallized too. A verydiffuse PP spherulite morphology in the PE matrix was formed in some partially miscible blends when PP was less than 20%by mass. Droplet-matrix structures were developed in other blends with either PP or PE as dispersed domains in a continuousmatrix, depending on the composition ratio. The scanning electron microscopy (SEM) images displayed a fibrillar structureof PP spherulite in the LLDPE-PP (80:20) and large droplets of PP in the HDPE-PP (80:20) blend, providing larger surfacearea and better bonding in the LLDPE-PP (80:20) blends. This explains why the blends with diffuse spherulite morphologyshowed greater improvement in tensile properties than droplet-matrix morphology blends after time-temperature treatment.  相似文献   

20.
线形低密度聚乙烯/废胶粉热塑弹性体动态硫化性能研究   总被引:1,自引:0,他引:1  
利用动态硫化法制备了线形低密度聚乙烯(LLDPE)/废胶粉(GTR)热塑弹性体。重点研究了两种交联剂:硫和过氧化二异丙苯(DCP)对共混物性能的影响。加入一定量的苯乙烯-丁二烯-苯乙烯(SBS)共聚物作为增容剂。结果表明,经过DCP动态硫化后的共混物的力学性能比简单共混的共混物有明显的提高,而加入硫磺体系对共混物力学性能影响不大甚至有所下降。通过红外光谱、热分析(DSC)和扫描电镜(SEM)对共混物的热行为和表面形态研究表明,加入DCP交联剂使LLDPE、SBS和胶粉之间发生了交联反应,从而增加了胶粉颗粒与LLDPE间的界面相容性,使其热塑性弹性体的力学性能得以提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号