首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work uses a simple “grafting through” approach in the preparation of anhydrous poly(vinylidene fluoride) (PVDF)‐g‐PVTri polymer electrolyte membranes (PEMs). Alkaline‐treated PVDF was used as a macromolecule in conjunction with vinyltriazole in the graft copolymerization. The obtained polymer was subsequently doped with triflic acid (TA) at different stoichiometric ratios with respect to triazole units and the anhydrous PEMs (PVDF‐g‐PVTri‐(TA)x) were prepared. All samples were characterized by FTIR and 1H NMR. The composition of PVDF‐g‐PVTri was determined by energy dispersive spectroscopy. Thermal properties of the membranes were examined by thermogravimetric analysis and differential scanning calorimetry. The surface roughness and morphology of the membranes were studied using atomic force microscopy, X‐ray diffraction, and scanning electron microscopy. PVDF‐g‐PVTri‐(TA)3 (C3‐TA3) with a degree of grafting of 47.22% showed a maximum proton conductivity of 0.09 S cm?1 at 150 °C and anhydrous conditions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1885–1897  相似文献   

2.
Blends of poly(vinylidene fluoride) (PVDF) and polyaniline (PAni) were prepared through melt blending in a batch mixer. The morphology, rheological behavior and electrical conductivity were investigated through transmission electron microscopy (TEM) and combined electro-rheological measurements. Through TEM analysis, it was possible to observe that all blends showed typical phase separation with the presence of conductive polymer aggregates. Deformations imposed during a strain sweep caused, not only disturbance of the linear viscoelastic behavior, but also changes in electrical conductivity. The oscillatory shear altered the morphology, breaking the PAni domains into smaller ones. This effect increases the distance between them and, consequently, resulted in a decrease of the electrical conductivity. The measurements under quiescent conditions and steady shear proved that the disturbance in morphology for PVDF/PAni system is non-recoverable. Through combined electrical and rheological measurements, it was possible to achieve good correlation between the electrical and flow behavior of PVDF/PAni blends.  相似文献   

3.
PVDF, poly(vinylidene fluoride), as a semi-crystalline polymer, has interesting electroactive properties but usual melt and solution processing techniques result in its thermodynamically favored non-polar α-phase. By comparison, poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE), PT for short, directly crystallizes in the polar β-phase under the same conditions as PVDF. In this study, blend thin films comprising PVDF and P(VDF-TrFE) were prepared by solvent casting method. The difference in the crystallization behavior is comprehensively investigated between the polymers: PVDF, P(VDF-TrFE), and the resulting blend films. It is found that replacement of the fluoride atom in TrFE monomer induces a strong steric hindrance that may alter the crystallization process to become more favorable for nucleation of the PVDF β-phase. To figure out the effect of TrFE content on the crystallization behavior and electroactive properties, films with different blend ratios of PVDF and P(VDF-TrFE) were prepared. We found that the PVDF films exhibit higher crystallization activation energy (ΔE) as PT content increases. The atomic force microscopy (AFM) in the piezoresponse force microscopy (PFM) mode illustrated that P5T5 films with equal contents of PVDF and P(VDF-TrFE) induced the highest d33 values.  相似文献   

4.
吴大诚 《高分子科学》2009,27(4):511-516
The effect of gas flow rate on crystal structures of electrospun and gas-jet/electrospun poly(vinylidene fluoride) (PVDF) fibers was investigated.PVDF fibers were prepared by electrospinning and gas-jet/electrospinning of its N,N-dimethylformamide (DMF) solutions.The morphology of the PVDF fibers was investigated by scanning electron microscopy (SEM).With an increase of the gas flow rate,the average diameters of PVDF fibers were decreased.The crystal structures and thermal properties of the PVDF fibers w...  相似文献   

5.
The surface of carbon black (CB) nanoparticles was functionalized with poly(vinylidene fluoride) (PVDF) either by trapping of macroradicals or by cycloaddition. PVDF with two iodine end groups (I‐PVDF‐I) obtained from iodine transfer polymerization in supercritical CO2 was heated in the presence of CB and the C? I bond was cleaved resulting in a reaction between the macroradical and the CB surface. To allow for cycloaddition of PVDF to the CB surface for a number of polymers, the iodine end groups were replaced by azide end groups. In addition, microwave irradiation was applied to the functionalization. The influence of temperature, time, polymer concentration, and polymer molar mass on the functionalization reaction was examined. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

6.
Poly(vinylidene fluoride) (PVDF) nanofibers were prepared by electrospray deposition (ESD). To control the diameter, morphology, and structure of PVDF nanofibers, some parameters were investigated, such as polymer concentration, nozzle‐to‐ground collector distance, feeding rate of the polymer solution, and applied voltage. The fabricated fiber was 80–700 nm in diameter. The increase in the polymer concentration caused an increase in the polymer viscosity and fiber diameter. At low polymer concentration (5 wt %), polymer nanoparticles were formed. An increase in applied voltage will increase the fiber diameter. Variation in the nozzle‐to‐ground collector distance did not result in significant changes in the fiber diameter. Increase in the feeding rate of the polymer solution decreased the fiber diameter. Differential scanning calorimetry (DSC) and wide angle X‐ray diffraction (WAXD) measurements showed that the melting point and total crystallinity were decreased. Fourier transform infrared spectroscopy (FTIR) measurement revealed that ESD process induced the formation of the oriented β‐phase PVDF structures. It was also demonstrated that the addition of hydrofluorocarbon solvent to polymer solution remarkably enhanced the formation of β‐phase crystalline structure of PVDF nanofiber. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 779–786, 2006  相似文献   

7.
The adhesion behavior of poly(vinylidene fluoride) (PVDF) to carbon fiber (CF) has always been a huge challenge, on account of the inertness nature of PVDF and the lack of reactive functional groups. In this work, a novel maleic anhydride grafted PVDF (MPVDF) aqueous sizing agent was prepared to modify the interface between CF and PVDF matrix. The surface properties of desized, MPVDF‐sized, and PVDF‐sized carbon fibers were characterized by the scanning electron microscopy, X‐ray photoelectron spectroscopy, atomic force microscopy, and dynamic contact angle analysis test. The results demonstrated that the surface roughness increased from 39 to 55 nm, and surface energy increased from 40 to 74 mN m?1 after MPVDF sizing treatment. The content of activated carbon atoms increased from 31.0% to 48.4%. Subsequently, the interlaminar shear strength was examined, for which was a critical indicator of the interfacial adhesion between CF and matrix. Compared with the desized CF, the value of interlaminar shear strength increased from 14.8 MPa to 25.5 MPa improved by 72% because of the improved H‐bonding formation, surface roughness, and wettability for MPVDF‐sized CF. In addition, the flexural strength and modulus were also improved by 47% and 74%, respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Integrally skinned asymmetric poly(vinylidene fluoride) hollow fibre membranes were prepared and characterized. The effects of phase inversion methods (dry-wet or wet) and spinning conditions, such as the type of solvent (NMP, DMAc), the concentration of polymer in dope solution, temperature of the external coagulation bath and the composition of the inner coagulant on the morphology and on the formation of a dense skin layer were investigated. The structure of the membranes was analyzed by scanning electron microscopy and the gas permeation properties with six different gases (He, H2, N2, O2, CH4 and CO2) were measured at 25 °C to confirm the integrity of the selective skin layer. Under the proper conditions highly selective and permeable PVDF hollow fibre membranes were thus obtained by dry-wet spinning of a 30 wt.% PVDF solution in DMAc, using hot water (50 °C) as the external coagulant and a bore fluid of pure water as the internal coagulant. The best membrane had a selective outer skin with an effective thickness of approximately 0.2 μm. The ideal selectivity of the hollow fibres approached or even exceeded the intrinsic ideal selectivity of a dense PVDF film, for instance the selectivity for He over N2 was 86.2 for the hollow fibre, whereas it was 83.5 for a dense PVDF reference film. DSC and FT-IR/ATR analysis indicated a higher fraction of the β-crystal phase in the selective skin and a high overall crystallinity than in the melt-processed film. The latter explains the relatively high selectivity and low permeability of the membranes. Intrinsic polymer properties make the membranes also suitable for vapour transport than for gas separation.  相似文献   

9.
Dispersed solutions of poly(vinylidene fluoride) (PVDF)/polycarbonate (PC) in the mixed solvent of N,N‐dimethylformamide (DMF)/tetrahydrofuran (THF) were used to electrospin in order to discuss the relationship between the properties of the polymer dispersions and the morphology of the obtained ultrafine fibers. With the changes of the mass ratio of PVDF/PC, the relative molecular mass of PVDF, and the volume ratio of DMF/THF, the morphology and the microstructure of the prepared PVDF/PC ultrafine fibers altered in accord with the viscosity, surface tension, and conductivity of the PVDF/PC dispersions. When the PVDF/PC mass ratio varied from 9/1 to 5/5, the ability of the polymer chain entanglement in PVDF/PC dispersion decreased as to the lower relative molecular mass of PC and higher chain rigidity, which lead to the formation of the beaded fibers together with the distinct core/shell structure. Similar phenomenon was also found when the lower molecular mass of PVDF was used instead of a higher one. Though the change of DMF/THF volume ratio did not specifically contribute to the properties of PVDF/PC dispersions, the accelerated evaporation and solubility of the mixed solvent by the THF amount increasing was feasible to generate the uniform fibrous morphology and the distinct core/shell structure. © 2009 Wiley Periodicals, Inc.J Polym Sci Part B: Polym Phys 48: 372–380, 2010  相似文献   

10.
叶芸  蒋亚东 《高分子学报》2009,(11):1091-1095
利用静电自组装方法在石英玻璃表面交替沉积聚二烯丙基二甲基氯化铵(PDDA)和聚偏氟乙烯(PVDF)超薄膜,制得PDDA/PVDF铁电复合超薄膜.通过石英晶体微天平实时监测超薄膜的沉积,研究了超薄膜的表面形貌、结构及电性能.结果表明,自组装每层PVDF超薄膜的厚度为7.5 nm;PDDA/PVDF铁电复合超薄膜的表面平整、均匀,其中C1s的光电子能谱与极化处理后充负电荷的PVDF铁电聚合物一致,但F1s由于溶解再组装过程而降低了0.3 eV;静电自组装材料纳米级的薄膜厚度和聚合物的络合作用导致了铁电复合超薄膜的非晶结构和高的表面电阻率.  相似文献   

11.
The membrane formation of crystalline poly(ethylene-co-vinyl alcohol) (EVAL), poly(vinylidene fluoride) (PVDF), and polyamide (Nylon-66) membranes prepared by dry-cast process was studied. Membrane morphologies from crystalline polymers were found to be strongly dependent on the evaporation temperature. At low temperatures, all the casting solution evaporated into a particulate morphology that was governed by the polymer crystallization mechanism. The rise in the evaporation temperature changed EVAL membrane structure from a particulate to a dense morphology. However, as the temperature increased PVDF and Nylon-66 membranes still exhibited particulate morphologies. The membrane structures obtained were discussed in terms of the characteristics of polymer crystallization in the casting solution theoretically. At elevated temperatures the crystallization was restricted for the EVAL membrane because the increase rate in the polymer concentration was fast relative to the time necessary for growth of nuclei. Nonetheless, the time available for PVDF and Nylon-66 with stronger crystalline properties was large enough to form the crystallization-controlled particulate structure that differed in particle size only. In addition, particles in the PVDF membrane were driven together to disappear the boundary, but those in the Nylon-66 membrane exhibited features of linear grain boundary. The difference in particle morphology was attributed to the Nylon-66 with the most strongly crystalline property. Therefore, the kinetic difference in the crystallization rate of the polymer solution play an important role in dominating the membrane structure by dry-cast process.  相似文献   

12.
用电纺的方法制备了聚偏氟乙烯纳米纤维膜,它们具有多微孔结构,能够作为锂电池聚合物电解质.电纺中聚合物溶液的浓度对制备的电纺膜的结构形态有很大的影响,低浓度(10 wt%)时得到珠丝结构的膜,浓度15 wt%时则为纤维结构,而高浓度(18 wt%)时,电纺膜为交联的网状结构.用电纺法制备的聚偏氟乙烯纳米纤维微孔膜具有较高的孔隙率,而且它们与锂金属电极具有良好的界面稳定性;在25℃时吸液率最高可达340%,以这种膜制备的聚合物电解质室温电导率可达到1.57×10-3S.cm-1;由该电解质组装的扣式电池以0.5 mA.cm-2恒流充放电,25℃时50次循环后几乎无容量损失,具有良好的循环性能;即使60℃时,电池仍能保持良好的工作稳定性.  相似文献   

13.
Poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) (PVDF‐CTFE) membranes were prepared by solvent casting from dimethylformamide (DMF). The preparation conditions involved a systematic variation of polymer/solvent ratio and solvent evaporation temperature. The microstructural variations of the PVDF‐CTFE membranes depend on the different regions of the PVDF‐CTFE/DMF phase diagram, explained by the Flory‐Huggins theory. The effect of the polymer/solvent ratio and solvent evaporation temperature on the morphology, degree of porosity, β phase content, degree of crystallinity, mechanical, dielectric, and piezoelectric properties of the PVDF‐CTFE polymer were evaluated. In this binary system, the porous microstructure is attributed to a spinodal decomposition of the liquid‐liquid phase separation. For a given polymer/solvent ratio, 20 wt % , and higher evaporation solvent temperature, the β phase content is around 82% and the piezoelectric coefficient, d33, is ? 4 pC/N © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 761–773  相似文献   

14.
Poly(vinylidene fluoride) (PVDF) membranes were hydrophilic modified with hydroxyl group terminated hyperbranched poly(amine‐ester) (HPAE). Fourier transform infrared spectroscopy (FT‐IR) was used to study the chemical change of PVDF membranes. X‐ray photoelectron spectroscopy (XPS) indicated that some HPAE molecules were retained in PVDF membrane through polymer chain coiling. The presence of HPAE would improve the hydrophilicity of PVDF membrane. Scanning electron microscopy (SEM) was employed to characterize the morphology of different membranes. The thermodynamic stability for PVDF/DMAc/HPAE/Water system was characterized by the determination of the gelation values. Precipitation kinetics for PVDF/DMAc/HPAE/Water system was studied by precipitation time measurement. The water contact angle indicated that the hydrophilicity and the biocompatibility corresponding to protein adsorption of PVDF membrane were improved significantly after blending with hydrophilic HPAE molecules. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
邱兆斌 《高分子科学》2014,32(9):1139-1148
Poly(vinylidene fluoride) (PVDF) and poly(butylene succinate-co-24 mol% hexamethylene succinate) (PBHS), both crystalline polymers, formed melt-miscible crystalline/crystalline polymer blends. Both the characteristic diffraction peaks and nonisothermal melt crystallization peak of each component were found in the blends, indicating that PVDF and PBHS crystallized separately. The crystalline morphology and crystallization kinetics of each component were studied under different crystallization conditions for the PVDF/PBHS blends. Both the spherulitic growth rates and overall isothermal melt crystallization rates of blended PVDF decreased with increasing the PBHS composition and were lower than those of neat PVDF, when the crystallization temperature was above the melting point of PBHS component. The crystallization mechanism of neat and blended PVDF remained unchanged, despite changes of blend composition and crystallization temperature. The crystallization kinetics and crystalline morphology of neat and blended PBHS were further studied, when the crystallization temperature was below the melting point of PBHS component. Relative to neat PBHS, the overall crystallization rates of the blended PBHS first increased and then decreased with increasing the PVDF content in the blends, indicating that the preexisting PVDF crystals may show different effects on the nucleation and crystal growth of PBHS component in the crystalline/crystalline polymer blends.  相似文献   

16.
Novel polymer composites PEN/PVDF were prepared from poly(arylene ether nitrile) (PEN) and poly(vinylidene fluoride) (PVDF) via solution mixing. Due to the toughening effect of PVDF, PEN/PVDF blends with 5 wt % PVDF exhibit higher tensile strength (106 MPa) and breaking elongation (8.09%) than pure PEN does. Because of introduction of PVDF and interfacial polarization, the dielectric constant of PEN/PVDF blends at 1 kHz and room temperature increases from 3.3 to 4.5 with increasing content of PVDF. The dissipation factor (tanδ) of PEN/PVDF blends is relatively low (<0.04) in a very wide frequency range from 250 Hz to 100 kHz. The PEN/PVDF blends show certain piezoelectric behavior (d 33 from 0.9 to 1 pC/N) due to the contribution of PVDF. After polarization, the piezoelectric coefficient d 33 somewhat increases. The results suggest that PEN/PVDF blends will have potential application in electronic information fields, especially in film capacitors.  相似文献   

17.
Blends of poly(vinylidene fluoride) (PVDF) and silicone rubber (SR) were prepared through dynamic vulcanization. The effects of SR content on crystallization behavior, rheology, dynamic mechanical properties and morphology of the blends were investigated. Morphology characterization shows that the crosslinked spherical SR particles with an average diameter of 2-4 μm form a “network” in the PVDF continuous phase. The dynamic mechanical properties indicate the interface adhesion between PVDF and rubber phase is improved by the dynamic vulcanization. The rheology study shows that with the increase of rubber content the blends pseudoplastic nature is retained, while the viscosity increases, and hence the processability is less good. The incorporation of SR phase promotes the nucleation process of PVDF, leading to increased polymer crystallization rate and crystallization temperature. However, a higher content of SR seems to show a negative effect on the crystallinity of the PVDF component.  相似文献   

18.
Blends of poly(vinylidene fluoride) (PVDF), silicone rubber (SR) and flurorubber (FKM) were prepared via peroxide dynamic vulcanization. The effect of FKM loading on the morphology, mechanical properties, crystallization behavior, rheology and dynamic mechanical properties of the PVDF/SR/FKM ternary blends was investigated. A “network” was observed in the PVDF/SR binary blends, which disappeared in the ternary blends, but a core-shell-like structure was formed. The mechanical properties were significantly improved. The Izod impact strength of PVDF/SR/FKM blend with 19 wt% FKM was 18.3 kJ/m2, which was 3–4 times higher than the PVDF/SR binary blend. The complex viscosity and storage modulus of the PVDF/SR/FKM blends decreased with increasing FKM content, hence the processability was improved. The increase of FKM content seemed to show a favorable effect on the crystallization of the PVDF component. It promoted the nucleation process of PVDF, leading to increased polymer crystallization rate and higher crystallization temperature. The glass-rubber transition temperature of the PVDF phase moved to a lower temperature.  相似文献   

19.
Nanostructered nanofibers based on poly(vinylidene fluoride) (PVDF) and polyhedral oligomeric silsesquioxane (POSS) have been prepared by electrospinning process. The starting solutions were prepared by dissolving both the system components in the mixture N,N‐dimethylacetamide/acetone. The characteristics of the fiber prepared, studied by scanning electron microscopy, atomic force microscopy, and wide angle X‐ray diffraction, have been compared with those of PVDF fibers. Morphological characterization has demonstrated the possibility to obtain defect‐free PVDF/POSS nanofibers by properly choosing the electrospinning conditions, such as voltage, polymer concentration, humidity, etc. Conversely, in the case of fibers based on the neat polymer, it was not possible to attain the complete elimination of beads in the electrospun nanofibers. The different behavior of the two types of solutions has been ascribed to silsesquioxane molecules, which, without influencing the solution viscosity or conductivity, favor the formation of uniform structures by decreasing the system surface tension. Concerning POSS distribution in the fibers, the morphological characterization of the electrospun films has shown a submicrometric dispersion of the silsesquioxane. It is relevant to underline that cast films, prepared by the same solutions, have been found to be characterized by POSS aggregation, thus demonstrating a scarce affinity between the two‐system components. Indeed, the peculiar solvent evaporation of the electrospun solution, which is much faster than that occurring during the cast process, prevents POSS aggregation, thus leading to the formation of nanofibers characterized by a silsesquioxane dispersion similar to that present in solution. Finally, the presence of POSS improves the electrospun film mechanical properties. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Poly(vinylidene fluoride)/silica (PVDF/SiO2) hybrid composite films were prepared via sol–gel reactions from mixtures of PVDF and tetraethoxysilane in dimethylacetamide. Their morphology, crystalline structure, and thermal, mechanical, and electrical properties were examined. For morphology measurements, scanning electron microscopy and optical microscopy were applied. X‐ray diffraction and infrared analyses showed that the crystalline structure of PVDF was not changed much by the addition of SiO2, indicating that there was no interaction between PVDF and SiO2. With increasing SiO2 content, the melting temperature rarely changed, the degree of crystallinity and the dielectric constant decreased, and the decomposition temperature slightly increased. A PVDF/SiO2 hybrid composite film with 5 wt % SiO2 exhibited balanced mechanical properties without a severe change in the crystalline structure of PVDF, whereas for the hybrid composites with higher SiO2 contents (>10 wt %), the mechanical properties were reduced, and the spherulite texture of PVDF was significantly disrupted by the presence of SiO2 particles. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 19–30, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号