首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three new hydrazo-bridged diamines, 4,4′-bis [4-(4-aminophenyloxy) phenylhydrazyl] biphenyl (BPD-2), 4,4′-bis [4-(4-aminophenyloxy) phenylhydrazyl] biphenyl ether (SPD-2) and 4,4-bis [4-(4-aminophenyloxy) phenyl] hydrazine (APD-2), were synthesized by the reduction of three azo-diols, 4,4′-bis (4-azo-1-hydroxyphenyl) biphenyl (BPD), 4,4′-bis (4-azo-1-hydroxyphenyl) biphenyl ether (SPD) and azo-4-hydroxybenzene (APD), and polymerized with pyromellitic dianhydride (PM), 3,3′,4,4′-benzophenone tetracarboxylic acid dianhydride (BP) and 3,4,9,10-perylenetetracarboxylic acid dianhydride (PR) either by one-step solution polymerization or by two-step procedure which includes ring-opening polyaddition to give poly(amic acid) followed by cyclic dehydration to polyimide. The monomers and polyimides were characterized by their elemental analyses, FTIR and 1H NMR spectroscopy. Glass transition temperatures of the polymers are quite high (175-310 °C), characteristic of polyimides. The decomposition temperatures for 10% weight loss fall in the range of 280-575 °C in nitrogen. Activation energies of pyrolysis for each of the polymers calculated from Horowitz and Metzger's method are also high (52.54-95.28 kJ mol−1). The inherent viscosities of the polyimides at a concentration of 0.5 g/dl in DMF range from 0.94 to 1.93 dl/g.  相似文献   

2.
A new aromatic unsymmetrical diamine monomer, 1,4-(2′,4″-diaminodiphenoxy)benzene (OAPB), was successfully synthesized in three steps using hydroquinone as starting material and polymerized with various aromatic tetracarboxylic acid dianhydrides, including 4,4′-oxydiphthalic anhydride (ODPA), 3,3′,4,4′-benzophenone tetracarboxylic dianhydride (BTDA), 2,2′-bis(3,4-dicarboxyphenyl)-hexafluoropropane dianhydride (6FDA) and pyromellitic dianhydride (PMDA) via the conventional two-step thermal or chemical imidization method to produce a series of the unsymmetrical aromatic polyimides. The polyimides were characterized by solubility tests, viscosity measurements, IR, 1H NMR, and 13C NMR spectroscopy, X-ray diffraction studies, and thermogravimetric analysis. The polyimides obtained had inherent viscosities ranged of 0.38-0.58 dL/g, and were easily dissolved in common organic solvents. The resulting strong and flexible PI films exhibited excellent thermal stability with the decomposition temperature (at 5% weight loss) of above 505 °C and the glass transition temperature in the range of 230-299 °C. Moreover, the polymer films showed outstanding mechanical properties with the tensile strengths of 41.4-108.5 MPa, elongation at breaks of 5-9% and initial moduli of 1.15-1.68 GPa.  相似文献   

3.
A novel sulfonated diamine, 1,2-dihydro-2-(3-sulfonic-4-aminophenyl)-4-[4-(3-sulfonic-4-aminophenoxy)-phenyl]-phthalazin-1-one(S-DHPZDA), was successfully synthesized and two series of six-membered sulfonated polyimides (SPIs) were prepared from 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA), S-DHPZDA, and nonsulfonated diamines DHPZDA or 4,4′-diaminodiphenyl ether (ODA). The chemical structure of the S-DHPZDA and the SPIs were characterized by 1H NMR and FT-IR. Tough, brownish and transparent membranes were cast from SPIs’ solution in NMP. The water uptake, swelling ratio, chemical and thermal stability, hydrolytic and oxidative stability as well as proton conductivity of these new polymers were investigated systematically. Compared with Nafions, the obtained SPI membranes have onset decomposed temperatures of these two series SPIs were above 318 °C and decomposed temperature of main chain were 565 °C and excellent dimension stabilities on similar IECs. Introduction of phthalazinone moieties had improved the copolyimides’ solubility in polar aprotic organic solvents like m-cresol, NMP, DMSO, DMF etc. The SPIs had high proton conductivity (σ) in the order of magnitude of 10−3 to 10−2 S cm−1 depending on the degree of sulfonation (DS) of the polymers.  相似文献   

4.
2,3-Bis-(3,4-dicarboxyphenylcarboxyethoxy)-4′-nitrostilbene dianhydride (4) was prepared and reacted with 1,4-phenylenediamine, 4,4′-oxydianiline, 4,4′-diaminobenzanilide and 4,4′-(hexafluoroisopropylidene)dianiline to yield novel polyimides 5-8 containing 2,3-dioxynitrostilbenyl groups as NLO-chromophores, which constituted parts of the polymer backbones. The resulting polyimides 5-8 were soluble in polar solvents such as acetone and DMF. Polymers 5-8 showed a thermal stability up to 300 °C in TGA thermograms with Tg values obtained from DSC thermograms in the range of 135-160 °C. The SHG coefficients (d33) of poled polymer films at the 1064 cm−1 fundamental wavelength were around 5.26 × 10−9 esu. The dipole alignment exhibited exceptionally high thermal stability even at 30 °C higher than Tg and there was no SHG decay below 170-190 °C due to the partial main chain character of polymer structure, which was acceptable for NLO device applications.  相似文献   

5.
Novel optically active aromatic poly(amide-imide)s (PAIs) were prepared from newly synthesized N,N′-(4,4′-diphthaloyl)-bis-l-isoleucine diacid (3) via polycondensation with various diamines. The diacid was synthesized by the condensation reaction of 3,3′,4,4′-biphenyltetracarboxylic dianhydride (1) with l-isoleucine (2) in a mixture of acetic acid and pyridine (3:2 v/v). All the polymers were obtained in quantitative yields with inherent viscosities of 0.20-0.43 dL g−1. All the polymers were highly organosoluble in solvents like N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), tetrahydrofuran, γ-butyrolactone, cyclohexanone and chloroform at room temperature or upon heating. These poly(amide-imide)s had glass transition temperatures between 198 and 231 °C, and their 10% weight-loss temperatures were ranging from 368 to 398 °C and 353 to 375 °C under nitrogen and air, respectively. The polyimide films had tensile strengths in the range of 63-88 MPa and tensile moduli in the range of 0.8-1.4 GPa. These poly(amide-imide)s possessed chiral properties and the specific rotations were in the range of −3.10° to −72.92°.  相似文献   

6.
A new unsymmetrical aromatic diamine, viz., 4-pentadecylbenzene-1,3-diamine was synthesized through a series of reaction steps starting from 3-pentadecylphenol. 4-Pentadecylbenzene-1,3-diamine was employed to synthesize a series of new polyimides by one-step polycondensation in m-cresol with four commercially available aromatic dianhydrides, viz., 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA), 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA), 4,4′-oxydiphthalic anhydride (ODPA) and 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6-FDA). Inherent viscosities of resulting polyimides were in the range 0.33-0.67 dL/g and number average molecular weights were in the range 14,700-52,200 (GPC, polystyrene standard). Polyimides containing pendent pentadecyl chains were soluble in organic solvents such as chloroform, m-cresol, N,N-dimethylacetamide (DMAc), 1-methyl-2-pyrrolidinone (NMP), pyridine and nitrobenzene. Strong and flexible films of polyimides could be cast from their chloroform solutions. Polyimides exhibited glass transition temperature in the range 158-206 °C. The temperature at 10% wt. loss (T10), determined by TGA in nitrogen atmosphere, of polyimides was in the range 470-480 °C indicating good thermal stability.  相似文献   

7.
Two kinds of aromatic, unsymmetrical diamines with ether-ketone group, 3-amino-4′-(4-amino-2-trifluoromethylphenoxy)-benzophenone and 4-amino-4′-(4-amino-2-trifluoromethylphenoxy)-benzophenone, were successfully synthesized with two different synthetic routes. Then, they were polymerized with 4,4′-oxydiphthalic anhydride, 3,3′,4,4′-benzophenone tetracarboxylic dianhydride, and 2,2′-bis(3,4-dicarboxyphenyl)-hexafluoropropane dianhydride to form a series of fluorinated polyimides via a conventional two-step thermal or chemical imidization method. The resulting polyimides were characterized by measuring their solubility, viscosity, mechanical properties, IR-FT, and thermal analysis. The results showed that the polyimides had inherent viscosities of 0.48-0.68 dl/g and were easily dissolved in bipolarity solvents and common, low-boiling point solvents. Meanwhile, the resulting strong and flexible polyimide films exhibited excellent thermal stability, e.g., decomposition temperatures (at 10% weight loss) are above 575 °C and glass-transition temperatures in the range of 218-242 °C. The polymer films also showed outstanding mechanical properties, such as tensile strengths of 86.5-132.8 MPa, elongations at break of 8-14%, and initial moduli of 1.32-1.97 GPa. These outstanding combined features ensure that the polymers are desirable candidate materials for advanced applications.  相似文献   

8.
We have synthesized a novel dianhydride, 2,2′-dichloro-4,4′,5,5′-benzophenone tetracarboxylic dianhydride (DCBTDA). Polyimides were synthesized with DCBTDA or 3,3′,4,4′-benzophenone tetracarboxylic dianhydride (BTDA) and several relatively rigid meta- and para- substituted mononuclear diamines. The BTDA based systems were insoluble in dipolar, aprotic solvents whereas the DCBTDA based polymers displayed enhanced solubility in these solvents. The thermal stability of these polyimides was excellent as measured by 5% weight loss decomposition. The Tg's of the polymers were all above 290°C.  相似文献   

9.
A series of phenylethynyl terminated oligoimides based on 3,3′,4,4′-diphenylsulfonetetracarboxylic dianhydride (DSDA), m-phenylene diamine (m-PDA) or/and 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene (6FAPB) with calculated molecular weight of 5000 g mol−1 were synthesized. The effect of molecular structure on solubility and melt viscosity of oligoimides as well as the thermal properties of cured polyimide resins was investigated. Experimental results indicated that the oligoimides have good solubility in strong polar solvents to afford homogeneous solutions with the solid content as high as 50 wt%. The oligoimides exhibited better solubility and lower minimum melt viscosity at relatively lower temperature with the incorporation of flexible 6FAPB. These oligoimides could be thermally cured at 320-380 °C to give thermosetted resins. The cured resins have good thermal stability with the glass transition temperatures of 278-329 °C and the onset decomposition temperatures higher than 500 °C. Adhesive properties of polyimides adhered to stainless steel at various conditions were evaluated by lap shear strength test. It was found that the LSS at room temperature increased with the molar ratio of 6FAPB increasing. The polyimides with combination of rigid and flexible structures exhibited good adhesive properties. With the increasing of curing temperature, the lap shear strength of polyimides at elevated temperature maintained at a high level due to the formation of strong bond.  相似文献   

10.
A series of copolyimides were prepared from benzophenone-3,3′,4,4′-tetracarboxylic dianhydride (BTDA) and various aromatic diamines which contain a fluorenyl group and/or alkyl substituents in ortho position to the amine groups. The effect of the chemical composition on the glass transition temperature (Tg), thermal stability as well as on the dielectric constant of these polymers was studied. High Tg polymers (Tg ranging from 260 °C to 370 °C), withstanding temperatures as high as 400 °C for 10 h and having a low dielectric constant (from 2.6 to 3.1) were successfully synthesized. All these polymers were able to crosslink under UV or thermal treatments.  相似文献   

11.
To prepare proton conductive membrane for direct methanol fuel cells (DMFC), a novel sulfonated aromatic diamine monomer, 1,4-bis(4-amino-2-sulfonic acid-phenoxy)-benzene (DSBAPB) was synthesized and characterized by 1H NMR and FT-IR. Then a series of sulfonated polyimides (SPIs) were prepared from DSBAPB with 1,4,5,8-naphthalene tetracarboxylic dianhydride (NTDA) and a non-sulfonated diamine, 4,4′-oxydianiline (ODA) via one-step high-temperature polymerization method. The sulfonation degree of the SPIs can be controlled by changing the mole ratio of sulfonated monomer to non-sulfonated monomer. The obtained SPI membranes exhibit desirable proton conductivity ranged from 7.9 × 10−3 to 7.2 × 10−2 S cm−1 and low methanol permeability of less than 2.85 × 10−7 cm2 s−1. Furthermore, the hydrolysis stability of the obtained SPIs is better than the BDSA based SPIs caused by the flexible structure.  相似文献   

12.
A novel fluorinated aromatic diamine 1,1′-bis(4-aminophenyl)-1-(3-trifluoromethylphenyl)-2,2,2-trifluoroethane (6FDAM) was synthesized in a simple procedure, which was then employed to prepare a series of fluorinated polyimides with commercial aromatic dianhydrides, such as pyromellitic dianhydride (PMDA), 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane (6FDA), 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and 4,4′-oxydiphthalic anhydride (ODPA). The polyimides exhibited good solubility in strong dipolar solvents such as NMP, DMAc, DMF and m-cresol as well as some of low boiling point organic solvents of THF and CHCl3, etc. Experimental results indicated the polyimides possessed low moisture adsorptions of 0.42-0.95%, low dielectric constant of 2.71-2.95 at 1 MHz, high dielectric strength of 92.0-122.6 kV/mm and good optical transparency with cutoff wavelengths of UV-vis at 330-375 nm. The polyimides also exhibited good mechanical properties as well as excellent thermal and thermo-oxidative stability. The fluorinated polyimides possessed better solubility, lower dielectric constant and water adsorption as well as higher optical transparency than the representative non-fluorinated polyimide derived from PMDA and 4,4′-oxydianiline (ODA).  相似文献   

13.
A series of aliphatic-aromatic polyimides have been synthesized. These polyimides were prepared by high-temperature polycondensation of the aliphatic diamines: 1,4-diaminobutane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,9-diaminononane, 1,10-diaminodecane, 1,12-diaminododecane and 4,4-methylenebis(2,6-dimethylaniline) with 1,2,3,4-cyclopentanetetracarboxylic dianhydride. Various ratios of diamines (aromatic:aliphatic) have been applied for preparation of copolyimides. Polycondensation proceeded at 190 °C and produced copolyimides with reduced viscosities up to 0.92 dl/g. The polyimides were soluble in a wide range of organic, common solvents and showed high-thermal stability. In most cases these polymers formed flexible films which presented excellent transparency.  相似文献   

14.
A series of dianhydride monomers, 2,2′-disubstituted-4,4′,5,5′-biphenyltetracarboxylic dianhydride (substituents = phenoxy, p-methylphenoxy, p-tert-butylphenoxy, nitro, and methoxy) were synthesized by the nitration of an N-methyl protected 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA) and subsequent aromatic nucleophilic substitutions with aroxides (NaOAr) or methoxide. These dianhydrides were polymerized with various aromatic diamines in refluxing m-cresol containing isoquinoline to afford a series of aromatic polyimides. The effects of varying 2,2′-substituents of the dianhydride (BPDA) moiety on the properties of polyimides were investigated. It was found that polyimides from the dianhydrides containing phenoxy, p-methylphenoxy, and p-tert-butylphenoxy side groups possessed excellent solubility and film forming capability whereas polyimides from 2,2′-dinitro-BPDA and 2,2′-dimethoxy-BPDA were less soluble in organic solvent. The soluble polymers formed flexible, tough and transparent films. The films had a tensile strength, elongation at break, and Young’s modulus in the ranges 102-168 MPa, 8-21%, 2.02-2.38 GPa, respectively. The polymer gas permeability coefficients (P) and ideal selectivities for N2, O2, CO2 and CH4 were determined for the -OAr substituted polyimides. The oxygen permeability coefficient (PO2) and permselectivity of oxygen to nitrogen (PO2/N2) of the films were in the ranges 3.4-11.3 barrer and 3.8-4.6, respectively. The gas permeability typically increased with increasing free volume in the order of tert-butylphenoxy substituted PI > methylphenoxy substituted PI > phenoxy substituted PI.  相似文献   

15.
Soluble fluoro-polyimides have been synthesized by reacting of a fluorine-containing aromatic dianhydride, 2,2′-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride, with aromatic diamine to yield poly(amic acid)s which were then cyclized to yield polyimide by chemical imidization method. The polyimides have excellent solubility both in strong bipolar solvents, such as NMP and DMAc, and in common organic solvents, such as THF and dioxane, etc. The glass transition temperature of these polyimides were determined by DSC and ranged from 281 to 289 °C. Thermogravimetric analysis indicated that these polyimides have good thermal stability with initial thermal decomposition temperature of 520-526 °C. The polyimide asymmetric membranes were prepared by phase inversion method and the inner structure was observed by method of SEM. The pervaporation properties of the prepared polyimides asymmetric membranes for n-heptane/thiophene mixtures were investigated at 40-77 °C and the permeation flux and the sulfur enrichment factor of the polyimide membranes are in the range of 0.56-1.68 kg/m2 h and 3.12-2.24, respectively. The result demonstrated that the pervaporation method could be very effective method for desulfurization by polyimides asymmetric membranes with ultrathin skin.  相似文献   

16.
Two kinds of novel aromatic, unsymmetrical diamines with ether-ketone group, 3-amino-4′-(4-amino-2-trifluoromethylphenoxy)-benzophenone and 3-amino-4′-(4-aminophenoxy)-benzophenone, was successfully synthesized by two different synthetical routes and polymerized with various aromatic tetracarboxylic acid dianhydrides, including 4,4′-oxydiphthalic anhydride, 3,3′,4,4′-benzophenone tetracarboxylic dianhydride, and 2,2′-bis(3,4-dicarboxyphenyl)-hexafluoropropane dianhydride, via a conventional two-step thermal or chemical imidization method to produce a series of fluorinated polyimides. The polyimides were characterized with solubility tests, viscosity measurements, mechanical properties tests, IR-FT, and thermogravimetric analysis. The polyimides had inherent viscosities of 0.54-0.77 dL/g and were easily dissolved in both polar, aprotic solvents and common, low-boiling-point solvents. The resulting strong and flexible polyimide films exhibited excellent thermal stability, with decomposition temperatures (at 10% weight loss) above 573 °C and glass-transition temperatures in the range of 222-251 °C. Moreover, the polymer films showed outstanding mechanical properties, with tensile strengths of 86.5-121.6 MPa, elongations at break of 9-16%, and initial moduli of 1.26-1.97 GPa. These outstanding combined features ensure that the polymers are desirable candidate materials for advanced applications.  相似文献   

17.
A new kind of pyridine-containing aromatic diamine monomer, 4-phenyl-2,6-bis[3-(4′-amino-2′-trifluoromethyl-phenoxy) phenyl] pyridine (m-PAFP), was successfully synthesized by a modified Chichibabin reaction of 3-(4′-nitro-2′-trifluoro-methyl-phenoxy)-acetophenone with benzaldehyde, followed by a catalytic reduction. A series of fluorinated pyridine-bridged aromatic poly(ether-imide)s were prepared from the resulting diamine monomer with various aromatic dianhydrides via a conventional two-step thermal or chemical imidization method. The inherent viscosities values of these polyimides were in the range of 0.56-1.02 dL/g, and they could be cast and thermally converted into transparent, flexible, and tough polyimide films. The polyimides displayed higher solubility in polar solvents such as NMP, DMSO and m-cresol. The polyimides had good thermal stability, with the glass transition temperatures (Tg) of 187-211 °C, the temperatures at 5% weight loss of 511-532 °C, and the residue at 800 °C in air was higher than 50%. These films also had dielectric constants of 2.64-2.74 at 10 MHz and low water uptake 0.53-0.66%. Wide-angle X-ray diffraction measurements revealed that these polyimides were predominantly amorphous. Moreover, the polymer films of these novel polyimides showed outstanding mechanical properties with the tensile strengths of 90.1-96.6 MPa, elongations at breakage of 8.9-10.7% and tensile modulus of 1.65-1.98 GPa.  相似文献   

18.
Polyimides with a low dielectric constant and excellent adhesion were prepared from a diamine containing phosphine oxide and fluorine groups, bis(3,3′-aminophenyl-2,3,5,6-tetrafluoro-4-trifluoromethyl phenyl phosphine oxide (mDA7FPPO), and rigid-rod type dianhydride containing fluorine groups, such as 3,6-di(3′,5′-bis(trifluoromethyl)-phenyl)pyromellitic dianhydride (12FPMDA). The polyimides were synthesized via the known two-step process, preparation of poly(amic-acid) followed by solution imidization, and characterized by FT-IR, NMR, DSC, TGA and TMA. In addition, their solubility, intrinsic viscosity, dielectric constant and adhesive property were also evaluated. For comparison, 3,6-di(4′-trifluoromethylphenyl) pyromellitic dianhydride (6FPMDA) and 3,6-diphenylpyromellitic dianhydride (DPPMDA) were also utilized. The prepared polyimides exhibited high Tg (276-314 °C), excellent thermal stability (>500 °C in air), good adhesive property (104.7-126.3 g/mm), good solubility, and very low dielectric constant (2.34-2.89).  相似文献   

19.
Two new diacid monomers, 2,2′-sulfide bis(4-methyl phenoxy acetic acid) and 2,2′-sulfoxide bis(4-methyl phenoxy acetic acid) were successfully synthesized by refluxing the 2,2′-sulfide bis(4-methyl phenol) and 2,2′-sulfoxide bis(4-methyl phenol) with chloroacetonitrile in the presence of potassium carbonate, and subsequent basic reduction. Two novel series of poly(sulfide-ether-amide)s and poly(sulfoxide-ether-amide)s with aliphatic units in the main chain were prepared from diacids with various diamines.The polyamides were obtained in quantitative yields and their inherent viscosities were in the range of 0.43-0.89 dl g−1 at a concentration of 0.5 g dl−1 in N,N-dimethylacetamide (DMAc) solvent at 25 °C. They showed good thermal stability. The temperature for 10% weight loss in argon atmosphere was in the range of 350-415 °C. The polymers showed glass transition temperatures between 228 and 261 °C. Almost all of the polyamides were readily soluble in a variety of polar solvents such as N-methyl-2-pyrrolidone (NMP) and dimethyl sulfoxide (DMSO).  相似文献   

20.
A series of novel polyamide-imides (PAIs) with high glass transition temperature were prepared from diimide-dicarboxylic acid, 2,2′-bis(trifluoromethyl)-4,4′-bis(trimellitimidophenyl)biphenyl (BTFTB), by direct polycondensation with various diamines in N-methyl-2-pyrrolidinone using triphenyl phosphite and pyridine as condensing agents in the presence of dehydrating agent (CaCl2). The yield of the polymers was obtained was high with moderate to high inherent viscosities (0.80-1.03 dL g−1). Gel permeation chromatography (GPC) of the polymers showed number-average and weight-average molecular weights up to 8.6 × 104 and 22 × 104, respectively. The PAIs were amorphous in nature. Most of the polymers exhibited good solubility in various solvents such as N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), pyridine, cyclohexanone and tetrahydrofuran. The polymer films had tensile strength in the range of 79-103 MPa, an elongation at break in the range of 6-16%, and a tensile modulus in the range between 2.1 and 2.8 GPa. The glass transition temperatures of the polymers were determined by DMA method and they were in the range of 264-291 °C. The coefficients of thermal expansion (CTE) of PAIs were determined by TMA instrument and they were between 29 and 67 ppm °C−1. These polymers were fairly thermally stable up to or above 438 °C, and lose 10% weight in the range of 446-505 °C and 438-496 °C, respectively, in nitrogen and air. These polymers had exhibited 80% transmission wavelengths which were in the range of 484-516 nm and their cutoff wavelengths were in between 418 and 434 nm. The PAIs with trifluoromethyl group have higher bulk density resulting in higher free volume and then lowering the dielectric constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号