首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infrared spectra of CH2F2 and CD2F2 have been measured under a medium resolution. The vibration-rotation bands of CD2F2 fundamentals have been analyzed and the assignment for the fundamentals of CD2F2 is given. In addition, a number of overtone and combination bands are observed for CH2F2, which helps to clarify the vibrational assignment for CH2F2. A normal coordinate treatment has been carried out: The force constants in a modified Urey-Bradley as well as the general valence force fields have been determined, the vibrational frequencies and the centrifugal distortion constants obtained from microwave spectroscopy being used. The force constants of the methylene fluoride molecule are discussed in connection with those of the related molecules. Special features of the CH2F2 and CD2F2 spectra are also described.  相似文献   

2.
The spectrum of a partially oriented sample of ethanol has been analysed by making use of the simpler spectra obtained from the species CD3CH2OH and CH3CD2OH, together with 1H?{2H} double resonance. With p-ethoxy-benzylidene-p-n-butylaniline (EBBA) as the nematic solvent the dipolar couplings of CH3 and CH2 protons with the OH proton can be observed, and their magnitudes are compared with values calculated assuming different models for C-O-H internal rotation. Information on the quadrupole coupling constant tensor elements for CD3 and CD2 deuterium nuclei is obtained.  相似文献   

3.
Starting from force constant values calculated by an ab initio MO method (4-31G(N1)), and by adjusting the diagonal elements, a practical force constant matrix (F) has been reached which could explain the observed infrared and Raman spectra (in the frequency range lower than 2000 cm?1) of the gauche form of the ethylamine CH3CH2NH2 molecule and five isotopic species CH313CH2NH2, CH3CH215NH2, CH3CD2NH2, CH3CH2ND2, and CD3CD2NH2. The F matrix for the trans form of ethylamine was constructed by transferring ab initio 4-31G(N1) values and by revising diagonal elements with conversion factors whose values are equal to the corresponding values of gauche form. A nearly complete set of assignments was achieved of the vibrational bands of ethylamines, observed so far in the spectral range 2000–100 cm?1. In matrix isolation spectroscopy, two bands assignable to the NH2 wagging vibrations of gauche and trans forms have been found at 775 and 782 cm?1, respectively, for CH3CH2NH2. They are at 768 and 774 cm?1, respectively, for CD3CD2NH2. From the intensity changes of these bands observed on changing the nozzle temperature in the matrix formation, the energy difference ΔE (gauche-trans) of these two conformers has been estimated to be 100 ± 10 cm?1.  相似文献   

4.
Although the vibrational spectra and force constants of CH3CN and CD3CN have been thoroughly studied, partially deuterated methyl cyanide has received much less attention. The infrared spectrum of CD2HCN has only recently been reported1 and that of CH2DCN has not yet appeared. Normal coordinate analysis for neither partially deuterated species has appeared. We report here harmonic frequencies and potential energy distributions for both partially deuterated methyl cyanide species, CH2DCN and CD2HCN, based on force fields and structural parameters from CH3CN and CD3CN. The calculated frequencies for CD2HCN are compared with the observed infrared frequencies. The vibrational interaction of the relatively high CN stretching frequency and the CD stretching frequencies is also discussed.  相似文献   

5.
The molecule styrene-β-D2 has been prepared. The liquid-phase infrared spectrum in the region 400 to 3500 cm?1 and the laser Raman spectrum have been recorded. Vibrational assignments for this molecule have been made largely by comparison with those of Condirston and Laposa (2) for C6H5CHCH2, C6H5CDCD2, C6D5CHCH2, and C6D5CDCD2.  相似文献   

6.
The ground state millimeter-wave spectra of CH3NCH2 and CD3NCD2 have been measured. The rotational constants, centrifugal distortion constants, and barrier hindering internal rotation of the methyl group have been determined for both species. For the parent species Iα and ?(i,a) were also obtained, and for the perdeuteriated species the quadrupole coupling constants of 14N were determined.  相似文献   

7.
Abstract

The rotational Raman spectra of four vapor phase isotopic methanols, CH3OH, CH3OD, CD3OH and CD3OD, have been reported for the first time in the wavenumber regions from 5 to 100–120 cm?1. The major parts of the spectra consist of bands equispaced at 3.19, 3.04, 2.56 and 2.46 cm?1 intervals, respectively, and have been interpreted as the pure rotational S-branch transitions.  相似文献   

8.
The absorption spectra of CH3OH, CH3OD, CD3OH, and CD3OD as pure liquids and as carbon tetrachloride solutions were measured in the 3,850 – 16,600cm?1 region. In addition to the various combination bands, the higher overtone bands of the hydrogen-bonded OH stretching vibration of self-associated methanols were observed at ~6470, 9300–9700, and 12,200 – 12,700 cm?1 with broad half-widths of ~700, ~1200, and ~1800 cm?1, respectively, and those of the OD stretching vibration, at ~4900, 7200–7400, and 9200–9600 cm?1 with half-widths of ~370, ~700, and ~1200 cm?1, respectively. With the aid of the observed frequencies, we determined the single minimum potential energy curve for the hydrogen-bonded OH and OD stretching vibrations of self-associated methanols. Furthermore, the absorption band due to double excitation of two neighboring OH groups linked together by a hydrogen bond was quantitatively analyzed by using the isotopic isolation technique. The double excitation band of CH3OH as pure liquid was found to appear at 6730 cm?1 with an absorbance of 0.08 at 1 mm light path length.  相似文献   

9.
A 13C16O2 laser optically pumping a FIR laser has resulted in 17 new FIR cw emissions from 78.5 μm to 917 μm. The FIR media were: CD3OD, CH3OD, CD3OH, NH3 and 15NH3. Interesting effects have been observed with a combination of NH3 and CD3OD resulting in a new FIR emission. Two new FIR emissions at 181.5 μm and 355.5 μm have been observed with a 12C16O2 laser optically pumping CD3OD.  相似文献   

10.
The rotational spectrum of (CH3OH)2 has been observed in the region 4-22 GHz with pulsed-beam Fabry-Perot cavity Fourier-transform microwave spectrometers at NIST and at the University of Kiel. Each a-type R(J), Ka = 0 transition is split into 15 states by tunneling motions for (CH3OH)2, (13CH3OH)2, (CH3OD)2, (CD3OH)2, and (CD3OH)2. The preliminary analysis of the methyl internal rotation presented here was guided by the previously developed multidimensional tunneling theory which predicts 16 tunneling components for each R(J) transition from 25 distinct tunneling motions. Several isotopically mixed dimers of methanol have also been measured, namely 13CH3OH, CH3OD, CD3OH, and CD3OD bound to 12CH3OH. Since the hydrogen bond interchange motion (which converts a donor into an acceptor) would produce a new and less favorable conformation from an energy viewpoint, it does not occur and only 10 tunneling components are observed for these mixed dimers. The structure of the complex is similar to that of water dimer with a hydrogen bond distance of 2.035 Å and a tilt of the acceptor methanol of 84° from the O-H-O axis. The effective barrier to internal rotation for the donor methyl group of (CH3OH)2 is ν3 = 183.0 cm−1 and is one-half of the value for the methanol monomer (370 cm−1), while the barrier to internal rotation of the acceptor methyl group is 120 cm−1.  相似文献   

11.
The technique of optical pumping in polar molecules is the most efficient for Far-Infrared (FIR) laser generation, providing also a versatile and powerful tool for molecular spectroscopy in this spectral region. Methanol (CH3OH) and its isotopic varieties are the best media for optically pumped FIR laser, with over thousand lines observed, and the most widely used for investigations and applications. In this sense, it is important organize and make available catalogues of FIR laser lines as complete as possible. Since the last critical reviews of 1984 [1] on methanol and its isotopic varieties [2,3,4], over hundred papers have been published dealing with hundreds of new FIR laser lines. In 1992 a review of FIR laser lines from CH3OH was presented [5]. In this communication we extend this work to the other methanol isotopes, namely CH3OD, CD3OH, CD3OD,13CH3OH,13CD3OH,13CD3OD, CH3 18OH, CH2DOH, CHD2OH and CH2DOD.Work supported by FAPESP, CNPq, FAEP-Brasil, and CNR-Italia  相似文献   

12.
The infrared and Raman spectra of CH3CH2CN, CH3CD2CN, and CD3CH2CN, and the infrared spectrum of CH3CH213CN were investigated in detail between 6000 and 100 cm−1. Some infrared measurements of other isotopic species are also reported and partial assignments given. All fundamentals of propionitrile-d0, -d2, -d3, and -13CN were assigned, together with a large number of mainly binary combination bands for which a general method of assignment is given. Several Fermi resonances were detected and the unperturbed positions of some of the levels involved were calculated. Special attention was paid to the CH stretching vibrations for which persisting wrong assignments exist in the literature, and to the methyl torsion frequencies which were determined for the four isotopic species above. A valence force field was calculated, and the potential energy distribution of the normal vibrations is tabulated.  相似文献   

13.
The geometrical structure of acetaldehyde from the microwave spectrum and torsional transitions from the far infrared spectrum have been fitted with a semirigid model in order to obtain the torsional parameters V3 = 415.0 and V6 = 22.3 cm?1 and the torsional energy levels of the isotopic species CH3CHO, CH3CDO, CD3CHO, and CD3CDO. These have been used in fitting torsional sequences in the 182-nm system of the electronic spectra of these species to obtain the excited state parameters V3 = 880 and V6 = 77 cm?1. Both the ground and excited state parameters are in good agreement with ab initio predictions.  相似文献   

14.
The preliminary analysis of the DFT calculations and the high-resolution Fourier transform spectrum of the ν7 band of CD3NO2 have been carried out for the first time. The rotational structure up to J = 10 have been fitted using Watson’s A-reduction in I r representation with a standard deviation of 0.0048cm−1. The rotational constants A, B, C have been obtained for the ν7 state of CD3NO2 with good statistical significance.  相似文献   

15.
The infrared gas-phase spectra of CH3CN, 13CH3CN, CH313CN, CH3C15N, CD3CN, and CD313CN have been studied in detail, in order to determine accurately the fundamental vibration frequency displacements on heavy isotopic substitution. A number of important Fermi resonances have been identified, and treated quantitatively. The unperturbed fundamental frequencies and heavy isotopic displacements form a self-consistent set of data, which, together with Coriolis zeta and centrifugal distortion constants, enable the harmonic potential function of methyl cyanide to be determined with only one constraint. A comparison between the latter and results from an ab initio calculation reveals disagreement in the values of two interaction constants, which seem well outside our experimental error. Infrared frequencies in crystalline films of CD3CN and CD313CN at 78 K are also reported.  相似文献   

16.
A three-laser heterodyne system was used to measure the frequencies of twelve previously observed far-infrared laser emissions from the partially deuterated methanol isotopologues 13CD3OH and CHD2OH. Two laser emissions, a 53.773 μm line from 13CD3OH and a 74.939 μm line from CHD2OH, have also been discovered and frequency measured. The CO2 pump laser offset frequency was measured with respect to its center frequency for twenty-four FIR laser emissions from CH3OH, 13CD3OH and CHD2OH. PACS 07.57.Hm; 42.55.Lt; 42.62.Eh  相似文献   

17.
Thirteen new submillimetre emission lines have been observed when pumping CH3OD using isotopic CO2 lasers, and fourteen when pumping CD3OD. Three isotopic CO2 lasers were used12C16O2,12C18O2, and13C16O2. The new lines were observed in a Fabry-Perot resonator. The wavelength ranges observed were from 55 to 320 m for CH3OD and from 66 to 531 m for CD3OD. The polarisation of the submillimetre laser lines relative to the CO2 pump line has also been determined.  相似文献   

18.
The infrared spectrum of totally deuterated methane CD4 has been recorded between 930 cm?1 and 1180 cm?1 under high resolution (0.003 cm?1). The ν2 and ν4 bands of 12CD4 have been reanalyzed on the basis of a complete third-order Hamiltonian including all the coupling terms linking the upper states of the two bands. A set of only 16 self-consistent parameters have been adjusted to fit more than 1650 assigned transitions reaching a maximum upper state J value of 20. The obtained standard deviation is 0.0041 cm?1. In addition, 171 lines of the ν4 band of 13CD4 have been assigned. They have been analyzed, in the same dyad scheme, by adjusting 7 parameters of the ν4 band together with the main ζ24 Coriolis parameter. The obtained standard deviation is only 0.0012 cm?1.  相似文献   

19.
The microwave spectra of six isotopic species of methylchloroformate, ClCO2CH3, have been recorded from 18.0 to 40.0 GHz. Structural parameters have been determined, and it is shown that the only stable conformer at ambient temperature is the s-trans. The Raman and far infrared spectra of the vapor are reported. Four cases of Fermi resonance have been observed in the Raman effect. Both the methyl and methoxy torsions have been observed in the far infrared, and the methyl barrier to internal rotation has been determined to be 1.15 kcal/mole (1.19 kcal/mole for the CD3 rotor), which is in agreement with the 1.23 kcal/mole obtained from the microwave splitting method. It is shown from both the 13C and 1H NMR spectra along with the far-infrared data that only one conformer exists, which is contrary to what was previously reported. The vibrational spectrum of the solid is also reported and discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号