首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yb3+ and M+ monovalent alkali ions (M+ = Li+, Na+, K+)-co-doped CaF2 cubic laser crystals were grown by the micro-pulling-down method (μ-PD) under CF4 atmosphere. Structural and spectroscopic characterizations of Yb3+ in substitution of Ca2+ (absorption, emission and decay curves) were carried out to study the effect of M+ ions as charge compensators.  相似文献   

2.
通过在稳定连续波运转的Yb:YAG 激光器中插入不同掺杂浓度的新型钠、镱共掺的氟化钙晶体的对比性实验,证明了镱、钠共掺的氟化钙晶体在1050nm具有明显的可饱和吸收作用,从而解释了该晶体作为增益介质在该波段总是趋于自调Q运转的原因.Yb3+离子是该晶体可饱和吸收作用的主要因素,但是共掺入适当的Na离子可以明显改善晶体的调Q效果.优化共掺镱、钠离子的浓度和比例后的氟化钙晶体能够作为1050nm波段激光器的被动Q开关. 关键词: 镱、钠共掺氟化钙 可饱和吸收体 调Q  相似文献   

3.
Optical and electron paramagnetic resonance study have been carried out on BaY2F8 single crystals doped with Yb ions at 0.5 and 10 mol%. The crystals have been obtained using the Czochralski method modified for fluoride crystal growth. Optical transmission measurements in the range of 190-3200 nm and photoluminescence measurements were carried out at room temperature. Absorption spectra of BaY2F8 single crystals doped with Yb due to the 2F7/22F5/2 transitions have been observed in the 930-980 nm range. To analyze the possible presence of Yb2+ ions in the investigated crystals, irradiation with γ-quanta with a dose of 105 Gy have been performed. The observed photoluminescence bands show usual emission in IR and other one in VIS, being an effect of cooperative emission of Yb3+ ions and energy up-conversion transitions of photons from IR to UV-vis(visible) due to hoping process between energy levels of paired Yb3+ and Er3+, where Er3+ ions are unintentional dopants. The EPR spectra of BaY2F8:Yb 10 mol% consist of many overlapping lines. They have been analyzed in terms of spin monomers, pairs, and clusters. The angular dependence of the resonance lines positions have been studied also to find the location of coupled ytterbium ions in the crystal structure.  相似文献   

4.
The absorption spectra of x-irradiated alkaline-earth fluoride (CaF2, SrF2, BaF2) crystals doped with Nd3+ ions have been investigated. X-irradiation results in creating the absorption bands of inter-configuration 4fn–4fn−1–5 d1 transitions of Nd2+. The charge reduction of the neodymium by irradiation is not temperature-stable and the ions reoxidation (Nd2+ → Nd3+) occurs under heating to 570 K in CaF2, 520 K in SrF2 and 470 K in BaF2.  相似文献   

5.
The data on optically detected EPR in absorption bands of alkaline-earth fluoride crystals doped with rare-earth (Er, Tm, Yb, Lu) or yttrium activators indicate that these crystals contain clusters similar to Y6F37, which is the structural unit of the naturally occurring mineral tveitite and of synthetic yttrofluorite [(CaF2)1?y(YF3)y] crystals, whose lattices exhibit a superstructure at certain values of y. Starting from a rare-earth ion concentration of the order of 0.1%, the greater part of the rare-earth impurity is concentrated in these clusters, having a tendency to aggregate into larger clusters. Clusters are also of considerable importance in semiconducting fluorite-structure crystals of CdF2 doped with Ga, In, or Y ions, as indicated by microwave and IR radiation absorption in these crystals.  相似文献   

6.
The optical spectra and electric conductivity of LaF3 crystals doped with 0.01, 0.1, and 0.3 mol % YbF3, where Yb was partly or completely recharged to the divalent state, are studied. The long-wavelength absorption band of 370 nm is caused by electrons transitioning from state 4f 14 to the level of anion vacancies. The remaining bands at 300–190 nm are caused by 4f 14–5d 14f 13 transitions in Yb2+. The bulk electric conductivity and peaks of the dielectric losses of LaF3–Yb2+ crystals are caused by Yb2+–anion vacancy dipoles. The activation energy of the reorientation of Yb dipoles is 0.58 eV. The optical and dielectric properties of Yb2+ centers are compared to those of Sm2+ and Eu2+ centers studied earlier in LaF3 crystals.  相似文献   

7.
Glasses in the PbF2-PbO-SiO2 system doped with 1 mol % of rare-earth elements (Nd3+, Er3+, or Yb3+) are synthesized and studied. The glasses were heat-treated in order to obtain glass ceramics with a fluoride crystalline phase. The changes in the structure and spectral optical properties of glass ceramics with respect to initial glasses were determined by using X-ray diffraction analysis and by studying the luminescent characteristics of dopant ions.  相似文献   

8.
Optical absorption and luminescence spectra of ytterbium and terbium codoped BaB2O4 (β-BBO and α-BBO) crystals grown in different conditions have been studied. Low-temperature absorption peaks were observed in all samples. Features related to rare earth ions were observed in absorption and luminescence spectra. Absorption and emission in the range 860-1000 nm are caused by 2F5/22F7/2 transitions in Yb3+ ions. Emission peaks at 500, 550, 590 and 630 nm correspond to 5D47F6, 7F5, 7F4, and 7F3 transitions of Tb3+ ions, respectively. The probable reasons of variations in spectroscopic features related to Yb in BBO host are discussed. It has been shown that the replacement of Ва2+ by Yb3+ in the lattice of ВаВ2О4 results in the decrease in the symmetry of oxygen surrounding of Yb3+.  相似文献   

9.
The microchip laser performance of Yb:YAG crystals doped with different ytterbium concentrations (CYb=10, 15, and 20 at. %) has been investigated at ambient temperature without active cooling of the gain media. Efficient laser oscillation for a 1-mm-thick YAG doped with 10 at. % Yb3+ ions was achieved at 1030 and 1049 nm with slope efficiencies of 85% and 81%, correspondingly. The laser performance of heavy-doped Yb:YAG crystals was limited by the thermal population at terminated lasing level and thermal lens effect at room temperature without sufficient cooling of the samples. The laser emitting spectra of Yb:YAG microchip lasers with different Yb concentrations and output couplings are addressed with the local temperature rise, due to the absorption of the pump power inside the gain media under different pump levels. PACS 42.55.Xi; 42.70.Hj; 42.55.Rz  相似文献   

10.
20 at.% Yb:YAG single crystals have been grown by the CZ method and gamma-ray irradiation induced color centers and valence change of Fe3+ and Y b3+ ions in Yb:YAG have been studied. One significant 255 nm absorption band was observed in as-grown crystals and was attributed to Fe3+ ions. Two additional absorption (AA) bands located at 255 nm and 345 nm, respectively, were produced after gamma irradiation. The changes in the AA spectra after gamma irradiation and air annealing are mainly related to the charge exchange of the Fe3+, Fe2+, oxygen vacancies and F-type color centers. Analysis shows that the broad AA band is associated with Fe2+ ions and F-type color centers. The transition Y b3+→Y b2+ takes place as an effect of recharging of one of the Y b3+ ions from a pair in the process of gamma irradiation.  相似文献   

11.
A spectroscopic characterization was carried out to identify crystal-field levels for magnetic-dipole transitions of Yb3+ ions located in the Y3+ dodecahedral S4 crystallographic site in YLiF4 (YLF) crystals which were grown either by the Czochralski technique or by the laser heated pedestal growth (LHPG) technique. The concentration dependence of the measured decay time of the 2F5/2 excited level of Yb3+ was analysed in order to understand relevant concentration quenching mechanisms. Under Yb3+ ion infrared pumping, self-trapping and up-conversion non-radiative energy transfer to trace rare-earth impurities (Er3+, Tm3+) has been observed over the visible region and interpreted by a limited-diffusion process within the Yb3+ doping ion subsystem to the impurities. The principal parameters useful for a theoretical approach for potential laser applications of Yb3+-doped YLiF4 crystals have also been given.  相似文献   

12.
The optical properties of Yb3+ ions in LiTaO3:Nd,Yb crystals   总被引:1,自引:0,他引:1  
3+ ions excited by energy transfer from Nd3+ ions in LiTaO3:Nd, Yb crystals are presented. The emission band of Yb3+ ions is broad, due to the strong phonon-coupling and to the relative large Stark-splitting of the ground 2F7/2 multiplet. The emission cross-section was evaluated by the reciprocity method, and a value of 0.53×10-20 cm2 was obtained. The gain coefficients derived for the inversion parameters in the range 0.05 to 0.5 indicate positive gain in the 985–1070 nm range. Received: 17 March 1997/Revised version: 10 June 1997  相似文献   

13.
Concentration series of disordered scheelitelike Yb:NaGd(MoO4)2 and Yb:NaLa(MoO4)2 single crystals are grown by the Czochralski method. The actual concentrations of Yb3+ ions in the crystals are determined by optical-absorption spectroscopy. The luminescence of Yb3+ ions in these crystals in the region of 1 μm is studied under UV and IR excitation. In the case of UV excitation, this luminescence appears as a result of nonradiative excited state energy transfer from donor centers of unknown nature to ytterbium. The character of the concentration dependence of Yb3+ luminescence indicates that the energy transfer at high Yb concentrations occurs with active participation of a cooperative mechanism, according to which the excitation energy of one donor center is transferred simultaneously to two Yb3+ ions. In other words, the quantum yield of this transfer exceeds unity, which can be used to increase the efficiency of crystalline silicon (c-Si) solar cells.  相似文献   

14.
Concentration quenching in Yb:YAG   总被引:1,自引:0,他引:1  
The concentration quenching in Yb:YAG crystals with high Yb3+ doping level was demonstrated, and studied as well. The color center and lattice distortion which originated from Yb2+ are the main reasons for producing the concentration quenching in unannealed Yb:YAG crystals, and after annealing at 1600°C in oxygen atmosphere for 24 h, Yb2+ vanished. Trace impurity ions are also responsible for this phenomenon.  相似文献   

15.
Y. Cheng  X. D. Xu  X. B. Yang  Z. Xin  D. H. Cao  J. Xu 《Laser Physics》2009,19(11):2133-2139
Laser crystal Yb3+-doped NaY(WO4)2 (Yb:NYW) with excellent quality has been grown by Czochralski technique. The rocking curves from (400) plane of as-grown Yb:NYW crystal was measured and the full-width value at half-maximum was 19.92″. The effective segregation coefficients were measured by the X-ray fluorescence method. The polarized absorption spectra and the fluorescence spectra of Yb:NYW crystal were measured at room temperature. The fluorescence decay lifetime of Yb3+ ion in NYW crystal has been investigated. The spectroscopic parameters of Yb:NYW crystal are calculated and compared with those of Yb:YAG crystal. A continuous wave output power of 3.06 W at 1031 nm was obtained with a slope efficiency of 42% by use of diode pumping.  相似文献   

16.
Cubic paramagnetic centers formed by Yb3+ impurity ions in fluorite-type crystals MeF2 (Me = Cd, Ca, Pb) have been investigated using electron paramagnetic resonance, magnetic circular dichroism, magnetic circular polarization of luminescence, Zeeman splitting of optical absorption and luminescence lines, and optical detection of electron paramagnetic resonance. The g factors of the 2Γ7 state in the excited multiplet 2 F 5/2 of Yb3+ ions in Me F2 crystals, the hyperfine interaction constant 171 A (171Yb) for the excited multiplet 2 F 5/2 in the CaF2 crystal, and the energies and symmetry properties of all energy levels of Yb3+ ions in MeF2 crystals are determined. The crystal-field parameters for the crystals under investigation are calculated.  相似文献   

17.
Electron paramagnetic resonance (EPR) spectra of impurity Yb3+ ions (about 0.1 at.%) in mixed crystals BaF2(1-x) plus LaF3(x) have been investigated for different values of the concentrationx at a frequency of about 9.5 GHz by both continuous-wave (CW) EPR and electron spin echo methods. A spectrum of trigonal symmetry with a complex hyperfine structure is observed in “pure” BaF2:Yb3+ (x=0). Upon admixture of small amounts of LaF3 (x=0.001), additional EPR lines arise with intensities increasing with the increase ofx up to 0.005. These lines are attributed to trigonal centers including two rare-earth ions and two compensating fluorine ions. A further increase ofx results in a decrease of the total EPR spectrum intensity, and atx≥0.05 the CW resonance becomes practically unobservable. This may be due to the formation of rare-earth ion clusters with paramagnetic Yb3+ ions occurring in domains with a disordered structure of surroundings resulting in very broad EPR lines, which cannot be registered by CW EPR. Indeed, very broad (not less than 1 KG) EPR lines were observed by the electron spin echo method for concentrationsx<-0.02.  相似文献   

18.
The absorption spectra of radiation-colored CaF2, SrF2, and BaF2 crystals activated by trivalent Pr, Sm, Нo, Er, Tm, and Yb (rare-earth, RE) ions are studied. It is shown that ionizing radiation reduces the impurity ions to the divalent state. The temperature resistance of divalent RE ions of radiation-colored CaF2 crystals correlates with the chemical stability of the compounds with divalent RE ions. The photochromic centers are produced in CaF2-Pr crystal colored by radiation at room temperature and heated to 200°C.  相似文献   

19.
GdVO4 single crystal co-doped with Yb3+ and Er3+ was grown by the Czochralski method. The X-ray powder diffraction pattern of Yb,Er:GdVO4 crystal confirms that the as-grown crystal is isostructural with pure GdVO4 crystal. Its polarized absorption spectra and non-polarized fluorescence spectra were measured at room temperature. The absorption band at 984 nm for π-polarization has an FWHM of about 36 nm, which is favorable for InGaAs LD laser pumping. The spectrum properties of Er3+ in Yb,Er:GdVO4 crystal were investigated based on Judd–Ofelt theory. There is strong energy transfer from Yb3+ to Er3+ in this crystal. When excited with 980 nm radiation, this crystal emitted strong fluorescence at about 1529 nm and 552.5 nm. The total energy transfer rate and efficiency from Yb3+ to Er3+ is 3.33 ms-1 and 67%, respectively. The energy transfer between Er3+ and Yb3+ ions is a multistep transfer process, and was investigated based on a random-walk model. The investigation result shows that there is strong cooperative-sensitization effect from Yb3+ to Er3+, which is the main upconversion energy-transfer process in this crystal. PACS 42.70.Hj; 81.10.Fq; 42.55.Rz  相似文献   

20.
The ytterbium ions doped MO-Al2O3 (M=Ca, Sr and Ba) phosphors have been synthesized through combustion technique and their up and down conversion fluorescence properties have been studied and compared. The samples were calcinated at different temperatures and their FTIR and XRD spectra have shown a close relationship. With 976 nm excitation all these phosphors show cooperative upconversion emission at 488 nm from the pairs of two Yb3+ ions along with an unexpected broad upconversion band in the blue green region and has been assigned to arise from the defect centers. Contrary to this upconversion emission, calcium aluminate phosphor exhibits bright and very broad down-conversion fluorescence (FWHM≈160 nm) upon UV (266 nm) excitation due to Yb2+ ions. The inter-conversion between the 3+ and 2+ valence states of Yb ion has been observed on calcinations of samples in open atmosphere and has been correlated to the emission properties. The Yb2+ ions containing calcium aluminate phosphor has been found suitable for producing broad band light in the visible region (white light). Lifetime of the emitting states of Yb3+ and Yb2+ ions have also been measured and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号