首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of remote substituents on bond dissociation energies (BDE) is examined by investigating allylic C-F and C-H BDE, as influenced by Y substituents in trans-YCH=CHCH2-F and trans-YCH=CHCH2-H. Theoretical calculations at the full G3 level model chemistry are reported. The interplay of stabilization energies of the parent molecules (MSE) and of the radicals formed by homolytic bond cleavage (RSE) and their effect on BDE are established. MSE values of allyl fluorides yield an excellent linear free energy relationship with the electron-donating or -withdrawing ability of Y and decrease by 4.2 kcal mol-1 from Y = (CH3)2N to O2N. RSE values do not follow a consistent pattern and are of the order of 1-2 kcal mol-1. A decrease of 4.1 kcal mol-1 is found in BDE[C-F] from Y = CH3O to NC. BDE[YCH=CHCH2-H] generally increases with decreasing electron-donating ability of Y for electron-donating groups and does not follow a consistent pattern with electron-withdrawing groups, the largest change being an increase of 3.6 kcal mol-1 from Y = (CH3)2N to CF3. The G3 results are an indicator of benzylic BDE in p-YC6H4CH2-F and p-YC6H4CH2-H, via the principle of vinylogy, demonstrated by correlating MSE of the allylic compounds with physical properties of their benzylic analogues.  相似文献   

2.
The reagent Li(2)[7-NMe(3)-nido-7-CB(10)H(10)] reacts with [Mo(CO)(3)(NCMe)(3)] in THF-NCMe (THF = tetrahydrofuran) to give a molybdenacarborane intermediate which, upon oxidation by CH(2)[double bond]CHCH(2)Br or I(2) and then addition of [N(PPh(3))(2)]Cl, gives the salts [N(PPh(3))(2)][2,2,2-(CO)(3)-2-X-3-NMe(3)-closo-2,1-MoCB(10)H(10)] (X = Br (1) or I (2)). During the reaction, the cage-bound NMe(3) substituent is transferred from the cage-carbon atom to an adjacent cage-boron atom, a feature established spectroscopically in 1 and 2, and by X-ray diffraction studies on several of their derivatives. When [Rh(NCMe)(3)(eta(5)-C(5)Me(5))][BF(4)](2) is used as the oxidizing agent, the trimetallic compound [2,2,2-(CO)(3)-7-mu-H-2,7,11-[Rh(2)(mu-CO)(eta(5)-C(5)Me(5))(2)]-closo-2,1-MoCB(10)H(9)] (10) is formed, the NMe(3) group being lost. Reaction of 1 in CH(2)Cl(2) with Tl[PF(6)] in the presence of donor ligands L affords neutral zwitterionic compounds [2,2,2-(CO)(3)-2-L-3-NMe(3)-closo-2,1-MoCB(10)H(10)] for L = PPh(3) (4) or CNBu(t) (5), and [2-Bu(t)C[triple bond]CH-2,2-(CO)(2)-3-NMe(3)-closo-2,1-MoCB(10)H(10)] (6) when L = Bu(t)C[triple bond]CH. When 1 is treated with CNBu(t) and X(2), the metal center is oxidized, and in the products obtained, [2,2,2,2-(CNBu(t))(4)-2-Br-3-X-closo-2,1-MoCB(10)H(10)] (X = Br (7), I (8)), the B-NMe(3) bond is replaced by B-X. In contrast, treatment of 2 with I(2) and cyclo-1,4-S(2)(CH(2))(4) in CH(2)Cl(2) results in oxidative substitution of the cluster and retention of the NMe(3) group, giving [2,2,2-(CO)(3)-2-I-3-NMe(3)-6-[cyclo-1,4-S(2)(CH(2))(4)]-closo-2,1-MoCB(10)H(9)] (9). The unique structural features of the new compounds were confirmed by single-crystal X-ray diffraction studies upon 6, 7, 9 and 10.  相似文献   

3.
There are conflicting reports on the origin of the effect of Y substituents on the S-H bond dissociation enthalpies (BDEs) in 4-Y-substituted thiophenols, 4-YC(6)H(4)S-H. The differences in S-H BDEs, [4-YC(6)H(4)S-H] - [C(6)H(5)S-H], are known as the total (de)stabilization enthalpies, TSEs, where TSE = RSE - MSE, i.e., the radical (de)stabilization enthalpy minus the molecule (de)stabilization enthalpy. The effects of 4-Y substituents on the S-H BDEs in thiophenols and on the S-C BDEs in phenyl thioethers are expected to be almost identical. Some S-C TSEs were therefore derived from the rates of homolyses of a few 4-Y-substituted phenyl benzyl sulfides, 4-YC(6)H(4)S-CH(2)C(6)H(5), in the hydrogen donor solvent 9,10-dihydroanthracene. These TSEs were found to be -3.6 +/- 0.5 (Y = NH(2)), -1.8 +/- 0.5 (CH(3)O), 0 (H), and 0.7 +/- 0.5 (CN) kcal mol(-1). The MSEs of 4-YC(6)H(4)SCH(2)C(6)H(5) have also been derived from the results of combustion calorimetry, Calvet-drop calorimetry, and computational chemistry (B3LYP/6-311+G(d,p)). The MSEs of these thioethers were -0.6 +/- 1.1 (NH(2)), -0.4 +/- 1.1 (CH(3)O), 0 (H), -0.3 +/- 1.3 (CN), and -0.8 +/- 1.5 (COCH(3)) kcal mol(-1). Although all the enthalpic data are rather small, it is concluded that the TSEs in 4-YC(6)H(4)SH are largely governed by the RSEs, a somewhat surprising conclusion in view of the experimental fact that the unpaired electron in C(6)H(5)S(*) is mainly localized on the S. The TSEs, RSEs, and MSEs have also been computed for a much larger series of 4-YC(6)H(4)SH and 4-YC(6)H(4)SCH(3) compounds by using a B3P86 methology and have further confirmed that the S-H/S-CH(3) TSEs are dominated by the RSEs. Good linear correlations were obtained for TSE = rho(+)sigma(p)(+)(Y), with rho(+) (kcal mol(-1)) = 3.5 (S-H) and 3.9 (S-CH(3)). It is also concluded that the SH substituent is a rather strong electron donor with a sigma(p)(+)(SH) of -0.60, and that the literature value of -0.03 is in error. In addition, the SH rotational barriers in 4-YC(6)H(4)SH have been computed and it has been found that for strong electron donating (ED) Ys, such as NH(2), the lowest energy conformer has the S-H bond oriented perpendicular to the aromatic ring plane. In this orientation the SH becomes an electron withdrawing (EW) group. Thus, although the OH group in phenols is always in-plane and ED irrespective of the nature of the 4-Y substituent, in thiophenols the SH switches from being an ED group with EW and weak ED 4-Ys, to being an EW group for strong ED 4-Ys.  相似文献   

4.
The alkylation of the Brookhart-Gibson {2,6-[2,6-(i-Pr)2PhN=C(CH3)]2(C5H3N)} FeCl2 precatalyst with 2 equiv of LiCH2Si(CH3)3 led to the isolation of several catalytically very active products depending on the reaction conditions. The expected dialkylated species {2,6-[2,6-(i-Pr)2PhN=C(CH3)]2}(C5H3N)Fe(CH2SiMe3)2 (2) was indeed the major component of the reaction mixture. However, other species in which alkylation occurred at the pyridine ring ortho position, {2,6-[2,6-(i-Pr)2PhN=C(CH3)]2-2-CH2SiMe3}(C5H3N)Fe(CH2SiMe3) (1), and at the imine C atom, {2-[2,6-(i-Pr)2PhN=C(CH3)]-6-[2,6-(i-Pr)2PhNC(CH3)(CH2 SiMe3)](C5H3N)}Fe(CH2SiMe3) (3), have also been isolated and fully characterized. In addition, deprotonation of the methyl-imino functions and formation of a new divalent Fe catalyst {[2,6-[2,6-(i-Pr)2PhN-C=(CH2)]2(C5H3N)}Fe(mu-Cl)Li(THF)3 (4) also occurred depending on the reaction conditions. In turn, the formation of 4 might trigger the reductive coupling of two units through the methyl-carbon wings. This process resulted in the one-electron reduction of the metal center, affording a dinuclear Fe(I) alkyl catalyst {[{[2,6-(i-Pr)2C6H5]N=C(CH3)}(C5H3N){[2,6-(i-Pr)26H5]N=CCH2}Fe(CH2SiMe3)]}2 (5). Different from other metal derivatives, complex 5 could not be prepared from the monodeprotonated version of the ligand. Its reaction with a mixture of FeCl2 and RLi afforded instead [{2,6-[2,6-(i-Pr)2PhN-C=(CH2)]2(C5H3N)}FeCH2Si(CH3)3][Li(THF)4] (6) which is also catalytically active. All of these high-spin species have been shown to have high catalytic activity for olefin polymerization, producing polymers of two distinct natures, depending on the formal oxidation state of the metal center.  相似文献   

5.
取代的2(1H)-吡啶酮团类化合物常具有诱人的生物活性[1,2].由于其酮式和醇式结构的互变异构化性质,确定互变异构平衡体系中的优势结构及研究取代基对平衡体系的影响,对阐明该类化合物的构效关系有着重要的意义.实验发现2(1H)-吡啶酮的6-位H被取代后对其互变异构平衡有  相似文献   

6.
Methane photolysis has been performed at the two Vacuum UltraViolet (VUV) wavelengths, 121.6 nm and 118.2 nm, via a spectrally pure laser pump-probe technique. The first photon is used to dissociate methane (either at 121.6 nm or at 118.2 nm) and the second one is used to ionise the CH(2) and CH(3) fragments. The radical products, CH(3)(X), CH(2)(X), CH(2)(a) and C((1)D), have been selectively probed by mass spectrometry. In order to quantify the fragment quantum yields from the mass spectra, the photoionisation cross sections have been carefully evaluated for the CH(2) and CH(3) radicals, in two steps: first, theoretical ab initio approaches have been used in order to determine the pure electronic photoionisation cross sections of CH(2)(X) and CH(2)(a), and have been rescaled with respect to the measured absolute photoionisation cross section of the CH(3)(X) radical. In a second step, in order to take into account the substantial vibrational energy deposited in the CH(3)(X) and CH(2)(a) radicals, the variation of their cross sections near threshold has been simulated by introducing the pertinent Franck-Condon overlaps between neutral and cation species. By adding the interpolated values of CH quantum yields measured by Rebbert and Ausloos [J. Photochem., 1972, 1, 171-176], a complete set of fragment quantum yields has been derived for the methane photodissociation at 121.6 nm, with carefully evaluated 1σ uncertainties: Φ[CH(3)(X)] = 0.42 ± 0.05, Φ[CH(2)(a)] = 0.48 ± 0.05, Φ[CH(2)(X)] = 0.03 ± 0.08, Φ[CH(X)] = 0.07 ± 0.01. These new data have been measured independently of the H atom fragment quantum yield, subject to many controversies in the literature. From our results, we evaluate Φ(H) = 0.55 ± 0.17 at 121.6 nm. The quantum yields for the photolysis at 118.2 nm differ notably from those measured at 121.6 nm, with a substantial production of the CH(2)(X) fragment: Φ[CH(3)(X)] = 0.26 ± 0.04, Φ[CH(2)(a)] = 0.17 ± 0.05, Φ[CH(2)(X)] = 0.48 ± 0.06, Φ[CH(X)] = 0.09 ± 0.01, Φ(H) = 1.31 ± 0.13. These new data should bring reliable and essential inputs for the photochemical models of the Titan atmosphere.  相似文献   

7.
The infrared and vibrational circular dichroism (VCD) spectra of six chiral oxorhenium(V) complexes, bearing a hydrotris(1-pyrazolyl)borate (Tp) ligand, have been investigated. These complexes are promising candidates for observation of parity violation (symmetry breaking due to the weak nuclear force). New chiral oxorhenium complexes have been synthesized, namely, [TpReO(eta2-O(CH3)CH2CH2O-O,O)] (4a and 4b) diastereomers and [TpReO(eta2-N(CH3)CH2CH2O-N,O)] (5) and [TpReO(eta2-N(tBu)CH2CH2O-N,O)] (6) enantiomers. All compounds could be obtained in enantiomerically pure form by using either column chromatography or HPLC over chiral columns. VCD spectroscopy of these compounds and of [TpReO(eta2-N(CH3)CH(CH3)CH(Ph)O-N,O)] (2) and [TpReO(eta2-N(CH2)3CHCO2-N,O)] (3) (with chiral bidentate ligands derived, respectively, from ephedrine and proline) were studied. This allowed the absolute configuration determination of all compounds together with their conformational analysis, by comparing calculated and experimental spectra. This is the first VCD study of rhenium complexes which further demonstrates the applicability of VCD spectroscopy in determining the chirality of inorganic complexes.  相似文献   

8.
New square-planar rhodium complexes of the redox-active ligand 9,10-phenenthrenediimine (phdi) have been prepared and studied. The complexes [dpp-nacnac(CH3)]Rh(phdi) (2a; [dpp-nacnac(CH3)](-) = CH[C(Me)(N-(i)Pr(2)C(6)H(3))](2)(-)) and [dpp-nacnac(CF3)]Rh(phdi) (2b; [dpp-nacnac(CF3)](-) = CH[C(CF(3))(N-(i)Pr(2)C(6)H(3))](2)(-)) have been prepared from the corresponding [nacnac]Rh(CO)(2) synthons by treatment with Me(3)NO in the presence of the phdi ligand. Complexes 2a and 2b are diamagnetic, and their absorption spectra are dominated by intense charge-transfer transitions throughout the visible region. Electrochemical studies indicate that both the phdi ligand and the rhodium metal center are redox-active, with the [nacnac](-) ligands serving to modulate the one-electron-oxidation and -reduction redox potentials. In the case of 2a, chemical oxidation and reduction reactions provided access to the one-electron-oxidized cation, [2a](+), and one-electron-reduced anion, [2a](-), the latter of which has been characterized in the solid state by single-crystal X-ray diffraction. Solution electron paramagnetic resonance spectra of [2a](+) and [2a](-) are consistent with S = (1)/(2) spin systems, but surprisingly the low-temperature spectrum of [2a](-) shows a high degree of rhombicity, suggestive of rhodium(II) character in the reduced anion.  相似文献   

9.
Meyer TJ  Huynh MH 《Inorganic chemistry》2003,42(25):8140-8160
There is a remarkable redox chemistry of higher oxidation state M(IV)-M(VI) polypyridyl complexes of Ru and Os. They are accessible by proton loss and formation of oxo or nitrido ligands, examples being cis-[RuIV(bpy)2(py)(O)]2+ (RuIV=O2+, bpy=2,2'-bipyridine, and py=pyridine) and trans-[OsVI(tpy)(Cl)2(N)]+ (tpy=2,2':6',2' '-terpyridine). Metal-oxo or metal-nitrido multiple bonding stabilizes the higher oxidation states and greatly influences reactivity. O-atom transfer, hydride transfer, epoxidation, C-H insertion, and proton-coupled electron-transfer mechanisms have been identified in the oxidation of organics by RuIV=O2+. The Ru-O multiple bond inhibits electron transfer and promotes complex mechanisms. Both O atoms can be used for O-atom transfer by trans-[RuVI(tpy)(O)2(S)]2+ (S=CH3CN or H2O). Four-electron, four-proton oxidation of cis,cis-[(bpy)2(H2O)RuIII-O-RuIII(H2O)(bpy)2]4+ occurs to give cis,cis-[(bpy)2(O)RuV-O-RuV(O)(bpy)2]4+ which rapidly evolves O2. Oxidation of NH3 in trans-[OsII(tpy)(Cl)2(NH3)] gives trans-[OsVI(tpy)(Cl)2(N)]+ through a series of one-electron intermediates. It and related nitrido complexes undergo formal N- transfer analogous to O-atom transfer by RuIV=O2+. With secondary amines, the products are the hydrazido complexes, cis- and trans-[OsV(L3)(Cl)2(NNR2)]+ (L3=tpy or tpm and NR2-=morpholide, piperidide, or diethylamide). Reactions with aryl thiols and secondary phosphines give the analogous adducts cis- and trans-[OsIV(tpy)(Cl)2(NS(H)(C6H4Me))]+ and fac-[OsIV(Tp)(Cl)2(NP(H)(Et2))]. In dry CH3CN, all have an extensive multiple oxidation state chemistry based on couples from Os(VI/V) to Os(III/II). In acidic solution, the OsIV adducts are protonated, e.g., trans-[OsIV(tpy)(Cl)2(N(H)N(CH2)4O)]+, and undergo proton-coupled electron transfer to quinone to give OsV, e.g., trans-[OsV(tpy)(Cl)2(NN(CH2)4O)]+ and hydroquinone. These reactions occur with giant H/D kinetic isotope effects of up to 421 based on O-H, N-H, S-H, or P-H bonds. Reaction with azide ion has provided the first example of the terminal N4(2-) ligand in mer-[OsIV(bpy)(Cl)3(NalphaNbetaNgammaNdelta)]-. With CN-, the adduct mer-[OsIV(bpy)(Cl)3(NCN)]- has an extensive, reversible redox chemistry and undergoes NCN(2-) transfer to PPh3 and olefins. Coordination to Os also promotes ligand-based reactivity. The sulfoximido complex trans-[OsIV(tpy)(Cl)2(NS(O)-p-C6H4Me)] undergoes loss of O2 with added acid and O-atom transfer to trans-stilbene and PPh3. There is a reversible two-electron/two-proton, ligand-based acetonitrilo/imino couple in cis-[OsIV(tpy)(NCCH3)(Cl)(p-NSC6H4Me)]+. It undergoes reversible reactions with aldehydes and ketones to give the corresponding alcohols.  相似文献   

10.
New silver(I) complexes have been synthesized from the reaction of AgNO(3), monodentate tertiary phosphanes PR(3) (PR(3) = P(C(6)H(5))(3), P(o-C(6)H(4)CH(3))(3), P(m-C(6)H(4)CH(3))(3), P(p-C(6)H(4)CH(3))(3), PCH(3)(C(6)H(5))(2)) and two novel electron withdrawing ligands: potassium dihydrobis(3-nitropyrazol-1-yl)borate and potassium dihydrobis(3-trifluoromethylpyrazol-1-yl)borate. These compounds have been characterized by elemental analyses, FT-IR, ESI-MS and multinuclear ((1)H, (19)F and (31)P) NMR spectroscopy. Solid state structures of the potassium salts K[H(2)B(3-(NO(2))pz)(2)] and K[H(2)B(3-(CF(3))pz)(2)] have been reported. They form polymeric networks due to intermolecular contacts of various types between the potassium ion and atoms of the neighboring molecules. The silver adducts [H(2)B(3-(NO(2))pz)(2)]Ag[P(C(6)H(5))(3)](2) and [H(2)B(3-(NO(2))pz)(2)]Ag[P(p-C(6)H(4)CH(3))(3)] have pseudo tetrahedral and trigonal planar silver sites, respectively. The bis(pyrazolyl)borate ligand acts as a kappa(2)-N(2) donor. The nitro-substituents are coplanar with the pyrazolyl rings in all these adducts indicating efficient electron delocalization between the two units. The [H(2)B(3-(CF(3))pz)(2)]Ag[P(C(6)H(5))(3)] complex has been obtained from re-crystallization of {[H(2)B(3-(CF(3))pz)(2)]Ag[P(C(6)H(5))(3)](2)} in a dichloromethane-diethyl ether solution; it is a three-coordinate, trigonal planar silver complex.  相似文献   

11.
New catalysts for the isospecific polymerization of 1-hexene based on cationic zirconium complexes incorporating the tetradentate fluorous dialkoxy-diamino ligands [OC(CF(3))(2)CH(2)N(Me)(CH(2))(2)N(Me)CH(2)C(CF(3))(2)O](2-) [(ON(2)NO)(2-)] and [OC(CF(3))(2)CH(2)N(Me)(1R,2R-C(6)H(10))N(Me)CH(2)C(CF(3))(2)O](2-) [(ON(Cy)NO)(2-)] have been developed. The chiral fluorous diamino-diol [(ON(Cy)NO)H(2), 2] was prepared by ring-opening of the fluorinated oxirane (CF(3))(2)COCH(2) with (R,R)-N,N'-dimethyl-1,2-cyclohexanediamine. Proligand 2 reacts cleanly with [Zr(CH(2)Ph)(4)] and [Ti(OiPr)(4)] precursors to give the corresponding dialkoxy complexes [Zr(CH(2)Ph)(2)(ON(Cy)NO)] (3) and [Ti(OiPr)(2)(ON(Cy)NO)] (4), respectively. An X-ray diffraction study revealed that 3 crystallizes as a 1:1 mixture of two diastereomers (Lambda-3 and Delta-3), both of which adopt a distorted octahedral structure with trans-O, cis-N, and cis-CH(2)Ph ligands. The two diastereomers Lambda-3 and Delta-3 adopt a C(2)-symmetric structure in toluene solution, as established by NMR spectroscopy. Cationic complexes [Zr(CH(2)Ph)(ON(2)NO)(THF)(n)](+) (n=0, anion=[B(C(6)F(5))(4)](-), 5; n=1, anion=[PhCH(2)B(C(6)F(5))(3)](-), 6) and [Zr(CH(2)Ph)(ON(Cy)NO)(THF)](+)[PhCH(2)B(C(6)F(5))(3)](-) (7) were generated from the neutral parent precursors [Zr(CH(2)Ph)(2)(ON(2)NO)] (H) and [Zr(CH(2)Ph)(2)(ON(Cy)NO)] (3), and their possible structures were determined on the basis of (1)H, (19)F, and (13)C NMR spectroscopy and DFT methods. The neutral zirconium complexes H and 3 (Lambda-3/Delta-3 mixture), when activated with B(C(6)F(5))(3) or [Ph(3)C](+)[B(C(6)F(5))(4)](-), catalyze the polymerization of 1-hexene with overall activities of up to 4500 kg PH mol Zr(-1) h(-1), to yield isotactic-enriched (up to 74 % mmmm) polymers with low-to-moderate molecular weights (M(w)=4800-47 200) and monodisperse molecular-weight distributions (M(w)/M(n)=1.17-1.79).  相似文献   

12.
This report covers initial studies in the coaggregation of nickel (Ni2+) and lanthanide (Ln3+) metal ions to form complexes with interesting structural and magnetic properties. The tripodal amine phenol ligand H3tam (1,1,1-tris(((2-hydroxybenzyl)amino)methyl)ethane) is shown to be particularly accommodating with respect to the geometric constraints of both transition and lanthanide metal ions, forming isolable complexes with both of these ion types. In the solid-state structure of [Ni(H2tam)(CH3CN)]PF6.2.5CH3CN.0.5CH3OH (1), the Ni(II) center has a distorted octahedral geometry, with an N3O2 donor set from the [H2tam]- ligand and a coordinated solvent (acetonitrile) occupying the sixth site. The reaction of stoichiometric amounts of H3tam with the Ni(II) ion in the presence of lanthanide(III) ions provides [LnNi2(tam)2]+ cationic complexes which contain coaggregated metal ions. These complexes are isolable and have been characterized by a variety of analytical techniques, with mass spectrometry proving to be particularly diagnostic. The solid-state structures of [LaNi2(tam)2(CH3OH)1/2(CH3CH2OH)1/2(H2O)]ClO4.0.5CH3OH.0.5CH3CH2OH.4H2O (2), [DyNi2(tam)2(CH3OH)(H2O)]ClO4.CH3OH. H2O(6), and [YbNi2(tam)2(H2O)]ClO4.2.58H2O(9) have been determined. Each complex contains two octahedral Ni(II) ions, each of which is encapsulated by the ligand tam3- in an N3O3 coordination sphere; each [Ni(tam)]-unit caps the lanthanide(III) ion via bridging phenoxy oxygen donor atoms. In 2, La3+ is eight-coordinated, while in 6, Dy(III) is seven- (to "weakly eight-") coordinated, and Yb(III) in 9 has a six-coordination environment. The complexes are symmetrically different, 2 possessing C2 symmetry and 6 and 9 having C1 symmetry. Magnetic studies of 2, 6, and 9 indicate that antiferromagnetic exchange coupling between the Ni(II) and Ln(III) ions increases with decreasing ionic radius of Ln(III).  相似文献   

13.
The bis(bidentate) phosphine cis,trans,cis-1,2,3,4-tetrakis(diphenylphosphino)cyclobutane (dppcb) has been used for the synthesis of a series of novel heterodimetallic complexes starting from [Ru(bpy)(2)(dppcb)]X(2) (1; X = PF(6), SbF(6)), so-called dyads, showing surprising photochemical reactivity. They consist of [Ru(bpy)(2)](2+)"antenna" sites absorbing light combined with reactive square-planar metal centres. Thus, irradiating [Ru(bpy)(2)(dppcb)MCl(2)]X(2) (M = Pt, 2; Pd, 3; X = PF(6), SbF(6)) dissolved in CH(3)CN with visible light, produces the unique heterodimetallic compounds [Ru(bpy)(CH(3)CN)(2)(dppcb)MCl(2)]X(2) (M = Pt, 7; Pd, 8; X = PF(6), SbF(6)). In an analogous reaction the separable diastereoisomers (ΔΛ/ΛΔ)- and (ΔΔ/ΛΛ)-[Ru(bpy)(2)(dppcb)Os(bpy)(2)](PF(6))(4) (5/6) lead to [Ru(bpy)(CH(3)CN)(2)(dppcb)Os(bpy)(2)](PF(6))(4) (9), where only the RuP(2)N(4) moiety of 5/6 is photochemically reactive. By contrast, in the case of [Ru(bpy)(2)(dppcb)NiCl(2)]X(2) (4; X = PF(6), SbF(6)) no clean photoreaction is observed. Interestingly, this difference in photochemical behaviour is completely in line with the related photophysical parameters, where 2, 3, and 5/6, but not 4, show long-lived excited states at ambient temperature necessary for this type of photoreaction. Furthermore, the photochemical as well as the photophysical properties of 2-4 are also in accordance with their single crystal X-ray structures presented in this work. It seems likely that differences in "steric pressure" play a major role for these properties. The unique complexes 7-9 are also fully characterized by single-crystal X-ray structure analyses, clearly showing that the stretching vibration modes of the ligand CH(3)CN, present only in 7-9, cannot be directly influenced by "steric pressure". This has dramatic consequences for their photophysical parameters. The trans-[Ru(bpy)(CH(3)CN)(2)](2+) chromophore of 9 acts as efficient "antenna" for visible light-driven energy transfer to the Os-centred "trap" site, resulting in k(en) ≥ 2 × 10(9) s(-1) for the energy transfer. Since electron transfer is made possible by the use of this intervening energy transfer, in dyads like 2-4 highly reactive M(0) species (M = Pt, Pd, Ni) could be generated. These species are not stable in water and M(II) hydride intermediates are usually formed, further reacting with H(+) to give H(2). Thus, derivatives of 3, namely [M(bpy)(2)(dppcb)Pd(bpy)](PF(6))(4) (M = Os, Ru) dissolved in 1:1 (v/v) H(2)O-CH(3)CN produce H(2) during photolysis with visible light.  相似文献   

14.
Linear gold(I) and silver(I) complexes with the ferrocenyl phosphine FcCH2PPh2 [Fc = (eta5-C5H5)Fe(eta5-C5H4)] of the types [AuR(PPh2CH2Fc)], [M(PPh3)(PPh2CH2Fc)]OTf, and [M(PPh2CH2Fc)2]OTf (M = Au, Ag) have been obtained. Three-coordinate gold(I) and silver(I) derivatives of the types [AuCl(PPh2CH2Fc)2] and [M(PPh2CH2Fc)3]X (M = Au, X = ClO4; M = Ag, X = OTf) have been obtained from the corresponding gold and silver precursors in the appropriate molar ratio, although some of them are involved in equilibria in solution. The crystal structures of [AuR(PPh2CH2Fc)] (R = Cl, C6F5), [AuL(PPh2CH2Fc)]OTf (L = PPh3, FcCH2PPh2), [Au(C6F5)3(PPh2CH2Fc)], and [Ag(PPh2CH2Fc)3]OTf have been determined by X-ray diffraction studies.  相似文献   

15.
Nitrosylruthenium complexes containing 2,2':6',2"-terpyridine (terpy) have been synthesized and characterized. The three alkoxo complexes trans-(NO, OCH3), cis-(Cl, OCH3)-[RuCl(OCH3)(NO)(terpy)]PF6 ([2]PF6), trans-(NO, OC2H5), cis-(Cl, OC2H5)-[RuCl(OC2H5)(NO)(terpy)]PF6 ([3]PF6), and [RuCl(OC3H7)(NO)(terpy)]PF6 ([4]PF6) were synthesized by reactions of trans-(Cl, Cl), cis-(NO, Cl)-[RuCl2(NO)(terpy)]PF6 ([1]PF6) with NaOCH3 in CH3OH, C2H5OH, and C3H7OH, respectively. Reactions of [3]PF6 with an acid such as hydrochloric acid and trifluoromethansulforic acid afford nitrosyl complexes in which the alkoxo ligand is substituted. The geometrical isomer of [1]PF6, trans-(NO, Cl), cis-(Cl, Cl)-[RuCl2(NO)(terpy)]PF6 ([5]PF6), was obtained by the reaction of [3]PF6 in a hydrochloric acid solution. Reaction of [3]PF6 with trifluoromethansulforic acid in CH3CN gave trans-(NO, Cl), cis-(CH3CN, Cl)-[RuCl(CH3CN)(NO)(terpy)]2+ ([6]2+) under refluxing conditions. The structures of [3]PF6, [4]PF6.CH3CN, [5]CF3SO3, and [6](PF6)2 were determined by X-ray crystallograpy.  相似文献   

16.
Nine dinuclear copper(II) complexes with hxta5- ligands [H5hxta = N,N'-(2-hydroxy-1,3-xylylene)-bis-(N-carboxymethylglycine)]: [Cu2(MeO-hxtaH)(H2O)2] x 4H2O (1), [Na(micro-H2O)2(H2O)6][Cu2(Cl-hxta)(H2O)3]2 x 6H2O (2), [Cu(H2O)6][Cu2(Me-hxta)(H2O)2](NO3) x 2H2O (3), [Cu2(R-hxtaH)(H2O)3] x 3H2O [R = Cl (4), CH3 (5), and MeO (6)], [Cu2(MeO-hxtaH2)(micro-X)(CH3OH)] x 3CH3OH [X = Cl (7), Br (8)] and K5Na(micro-H2O)10[Cu2(micro-CO3)(Me-hxta)]2 x 4H2O (9), have been synthesized and structurally characterized. In complexes 4-7, the dinuclear units are linked via novel pairwise supramolecular interactions involving the ligand carboxylate groups. The intra- and intermolecular magnetic interactions have been quantified, and the coupling constants have been related to the structural geometries.  相似文献   

17.
Ab initio calculations at the Hartree-Fock, MP2 and MP4 levels were performed to find structures of the equilibrium and transition states and the reaction energies and energies of activation of several competing reaction pathways of O (3P)+CH3SH. A 6-31G* basis set was used in all calculations. The mechanism of hydrogen atom abstraction from the S-H group methanethiol was found to be very competitive with the oxygen atom addition to the sulfur atom.  相似文献   

18.
A series of compounds (cat)[V6O6(OCH3)8(calix)(CH3OH)] was obtained under anaerobic conditions and solvothermal reaction of VOSO4 with p-tert-butylcalix[4]arene (calix) in methanol using different types of bases (Et4NOH, NH4OH, pyridine, Et3N). All compounds contain the same polyoxo(alkoxo)hexavanadate anion [V6O6(OCH3)8(calix)(CH3OH)]- (1) exhibiting a mixed valence {VIIIVIV5O19} core with the so-called Lindqvist structure coordinated to a calix[4]arene macrocycle and cocrystallizing with the conjugated acid of the base (cat = Et4N+, NH4(+), pyridinium, Et3NH+) involved in the synthesis process. The structures have been fully established from X-ray diffraction on single crystals and the mixed valence state has been confirmed by bond valence sum calculations. The magnetic behavior of all compounds are the same because of the polyalkoxohexavanadate anion [V6O6(OCH3)8(calix)(CH3OH)]- (1) and have been interpreted by DFT calculations. Thus the V(III)...V(IV) interactions are found to be weakly ferromagnetic (<5.5 cm(-1)) while the V(IV)...V(IV) are antiferromagnetic (-17.6; -67.6 cm(-1)). The set of the coupling exchange parameters allows a good agreement with the magnetic experimental data.  相似文献   

19.
The synthesis of the novel tripodal ligand [N(CH2CH2CH2OH)(CH2CH2SH)2] H3-4 is reported. The aliphatic tetradentate ligand is equipped with an unsymmetrical NOS2 donor set. It reacts with Ni(OAc)2 x 4H2O or Zn(BF4)2 x xH2O to give the complexes [Ni(H-4)]2 5 and [Zn(H-4)]4 6, respectively. The molecular structures of 5 and 6 have been determined by X-ray diffraction. In both cases multinuclear, mu-thiolato-bridged complexes, wherein the ligand coordinates with only three (NS2) of the four donor groups, had formed. The dinuclear complex 5 adopts a butterfly geometry and contains nickel(II) ions in a square-planar NS3 coordination environment. Cyclic voltammetry experiments indicate that the nickel centers in 5 are electron-rich but not overly sensitive toward oxidation. Complex 6 is tetranuclear and the four thiolato-bridged metal centers form a ring. It shows a distorted tetrahedral coordination geometry for the zinc(II) ions in an NS3 coordination sphere. In both complexes the hydroxyl functionalized ligand arm of the tripodal ligand remains uncoordinated.  相似文献   

20.
Reduction of {2,6-[2,6-(i-Pr)2PhN=C(CH3)]2(C5H3N)}CrCl (3) with NaH afforded the dinuclear dinitrogen complex {[{2,6-[2,6-(i-Pr)2PhN=C(CH3)]2(C5H3N)}Cr(THF)]2(mu-N2)}.THF (5). Reaction carried in exclusion of dinitrogen afforded instead deprotonation of the ligand with the formation of {2-[2,6-(i-Pr)2PhN=C(CH3)]-6-[2,6-(i-Pr)2PhNC=CH2](C5H3N)}Cr(THF) (4). Further reduction of 5 with NaH yielded a curious dinuclear compound formulated as [{2,6-[2,6-(i-Pr)2PhN=C(CH3)]2(C5H3N)}Cr(THF)][{2-[2,6-(i-Pr)2PhN=C(CH3)]-6-[2,6-(i-Pr)2PhNC=CH2](C5H3N)}Cr(THF)](mu-N2 H)(mu-Na)2 (6) containing two sodium atoms only bound to the dinitrogen unit and the pi systems of the two diiminepyridine ligands. Subsequent reduction with NaH triggered a complex series of events, leading to the formation of a species formulated as {2-[2,6-(i-Pr)2PhN=C(CH3)]-6-[2,6-(i-Pr)2PhNC=CH2](C5H3N)}Cr(mu-NH)][Na(THF)] (7) on the basis of crystallographic, spectroscopic, isotopic labeling, and chemical degradation experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号