首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A library of fluorous, (1H,1H,2H,2H-perfluoroalkyl)silyl-substituted derivatives of triphenylphosphine, Ph(3-a)P[C(6)H(5-y)[SiMe(3-b)(CH(2)CH(2)C(x)F(2x+1))(b)](y)-pos](a) [a = 1-3; b = 1-3; x = 4, 6, 8, or 10; pos = 3, 4 (y = 1) or 3,5 (y = 2)], was prepared using parallel synthetic techniques. Upon variation of these four parameters, a total of 108 different fluorous phosphines can be synthesized. Using factorial design, 37 phosphines were selected and their partition coefficients in the typical fluorous biphasic solvent system PFMCH/toluene (PFMCH = perfluoromethylcyclohexane) determined. By fitting of the partition coefficient data to linear functions of the parameters a, b, and x, the partition coefficients of the remaining 71 fluorous phosphines, which were not prepared, could be predicted. Using this approach, some unexpected trends in the dependence of the partition coefficient on variations of the four parameters became clear, resulting in a better understanding of the optimum fluorous substitution pattern for obtaining the highest partition coefficient (P). In this way, the partition coefficient was increased by 2 orders of magnitude, i.e., from the initial value P = 7.8 for 1(3, 2, 6, C4) to P > 238 for 1(2, 3, 6, C3C5). Para- and 3,5-substituted phosphines showed irregular behavior in the sense that elongation or increase of the number of perfluoroalkyl tails did not necessarily lead to higher partition coefficients. Particularly high values were found for phosphines containing a total of 72 fluorinated carbon atoms on the meta position(s) of the aryl rings. Linear relationships were found between the predicted log P of 1(a, b, x, C4) and the experimentally determined log P values of fluorous diphosphines [CH(2)P[C(6)H(4)(SiMe(3-b)(CH(2)CH(2)C(6)F(13))(b))-4](2)](2) and monophosphines Ph(3-a)P(C(6)H(4)(CH(2)CH(2)C(6)F(13))-4)(a). One of the most fluorophilic phosphines, i.e., 1(3, 1, 8, C3C5), was applied and efficiently recycled in rhodium-catalyzed, fluorous hydrosilylation of 1-hexene by HSiMe(2)Ph using PFMCH as the fluorous phase and the substrates as the organic phase. It was demonstrated that a higher partition coefficient of the ligand in PFMCH/toluene at 0 degrees C indeed resulted in less leaching of both the catalyst and the free ligand during phase separation.  相似文献   

2.
Reactions of Fe[N(SiMe(3))(2)](2) with 1 and 2 equiv of Ph(3)SiSH in hexane afforded dinuclear silanethiolato complexes, [Fe(N(SiMe(3))(2))(mu-SSiPh(3))](2) (1) and [Fe(SSiPh(3))(mu-SSiPh(3))](2) (2), respectively. Various Lewis bases were readily added to 2, generating mononuclear adducts, Fe(SSiPh(3))(2)(L)(2) [L = CH(3)CN (3a), 4-(t)BuC(5)H(4)N (3b), PEt(3) (3c), (LL) = tmeda (3d)]. From the analogous reactions of M[N(SiMe(3))(2)](2) (M = Mn, Co) and [Ni(NPh(2))(2)](2) with Ph(3)SiSH in the presence of TMEDA, the corresponding silanethiolato complexes, M(SSiPh(3))(2)(tmeda) [M = Mn (4), Co (5), Ni (6)], were isolated. Treatment of 3a with (PPh(4))(2)[MoS(4)] or (NEt(4))(2)[FeCl(4)] resulted in formation of a linear trinuclear Fe-Mo-Fe cluster (PPh(4))(2)[MoS(4)(Fe(SSiPh(3))(2))(2)] (7) or a dinuclear complex (NEt(4))(2)[Fe(2)(SSiPh(3))(2)Cl(4)] (8). On the other hand, the reaction of 3a with [Cu(CH(3)CN)(4)](PF(6)) gave a cyclic tetranuclear copper cluster Cu(4)(SSiPh(3))(4) (9), where silanethiolato ligands were transferred from iron to copper. Silicon-sulfur bond cleavage was found to occur when the cobalt complex 5 was treated with (NBu(4))F in THF, and a cobalt-sulfido cluster Co(6)(mu(3)-S)(8)(PPh(3))(6) (10) was isolated upon addition of PPh(3) to the reaction system. The silanethiolato complexes reported here are expected to serve as convenient precursors for sulfido cluster synthesis.  相似文献   

3.
A series of trigonal bipyramidal pentanuclear complexes involving the alkoxo-diazine ligands poap and p3oap, containing the M(5)[mu-O](6) core is described, which form by a strict self-assembly process. [Co(5)(poap-H)(6)](ClO(4))(4).3H(2)O (1), [Mn(5)(poap-H)(6)](ClO(4))(4).3.5CH(3)OH.H(2)O (2), [Mn(5)(p3oap-H)(6)](ClO(4))(4).CH(3)CH(2)OH.3H(2)O (3), and [Zn(5)(poap-H)(6)](ClO(4))(4).2.5H(2)O (4) are homoleptic pentanuclear complexes, where there is an exact match between the coordination requirements of the five metal ions in the cluster, and the available coordination pockets in the polytopic ligand. [Zn(4)(poap)(poap-H)(3)(H(2)O)(4)] (NO(3))(5).1.5H(2)O (5) is a square [2 x 2] grid with a Zn(4)[mu-O](4) core, and appears to result from the presence of NO(3), which is thought to be a competing ligand in the self-assembly. X-ray structures are reported for 1, 4, and 5. 1 crystallized in the monoclinic system, space group P2(1)/n with a = 13.385(1) A, b = 25.797(2) A, c = 28.513(3) A, beta = 98.704(2) degrees, and Z = 4. 4 crystallized in the triclinic system, space group P1 with a = 13.0897(9) A, b = 18.889(1) A, c = 20.506(2) A, alpha = 87.116(1) degrees, beta = 74.280(2) degrees, gamma = 75.809(2) degrees, and Z = 2. 5 crystallized in the monoclinic system, space group P2(1)/n with a = 14.8222(7) A, b = 21.408(1) A, c = 21.6197(9) A, beta = 90.698(1) degrees, and Z = 4. Compounds 1-3 exhibit intramolecular antiferromagnetic coupling.  相似文献   

4.
Novel yttrium chelating diamide complexes [(Y[ArN(CH(2))(x)NAr](Z)(THF)(n))(y)] (Z = I, CH(SiMe(3))(2), CH(2)Ph, H, N(SiMe(3))(2), OC(6)H(3)-2,6-(t)Bu(2)-4-Me; x = 2, 3; n = 1 or 2; y = 1 or 2) were made via salt metathesis of the potassium diamides (x = 3 (3), x = 2 (4)) and yttrium triiodide in THF (5,10), followed by salt metathesis with the appropriate potassium salt (6-9, 11-13, 15) and further reaction with molecular hydrogen (14). 6 and 11(Z = CH(SiMe(3))(2), x = 2, 3) underwent unprecedented exchange of yttrium for silicon on reaction with phenylsilane to yield (Si[ArN(CH(2))(x)NAr]PhH) (x = 2 (16), 3) and (Si[CH(SiMe(3))(2)]PhH(2)).  相似文献   

5.
New complexes of Rh(III), Ru(II), and Pd(II) with N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (tpen) and its analogues have been prepared. The reaction of RhCl(3).nH(2)O with tpen is slow and allows one to isolate the products of three consecutive substitution steps: Rh(2)Cl(6)(tpen) (1), cis-[RhCl(2)(eta(4)-tpen)](+) (2), and [RhCl(eta(5)-tpen)](2+) (3). In acetonitrile the reaction stops at the step of the formation of cis-[RhCl(2)(eta(4)-tpen)](+), whereas [RhCl(eta(5)-tpen)](2+) is the final product of the further reaction in ethanol. Fully chelated [Rh(tpen)](3+) could not be obtained. Bis(acetylacetonato)palladium(II), Pd(acac)(2), reacts with tpen and its analogues, N,N,N',N'-tetrakis(2-pyridylmethyl)-1,3-propanediamine (tptn) and N,N,N',N'-tetrakis(2-pyridylmethyl)-(R)-1,2-propylenediamine (R-tppn), to give [Pd(eta(4)-tpen)](2+) (4), [Pd(eta(4)-tppn)](2+) (5), and [Pd(eta(4)-tptn)](2+) (6), respectively. Two pyridyl arms remain uncoordinated in these cases. The formation of unstable Pd(III) complexes from these Pd(II) complexes in solution was suggested on the basis of electrochemical measurements. Ruthenium(III) trichloride, RuCl(3).nH(2)O, is reduced to give a Ru(II) complex with fully coordinated tpen, [Ru(tpen)](2+) (7). The same product was obtained in a more straightforward reaction of Ru(II)Cl(2)(dimethyl sulfoxide)(4) with tpen. Electrochemical studies showed a quasi-reversible [Ru(tpen)](2+/3+) couple for [7](ClO(4))(2) (E(1/2) = 1.05 V vs Ag/AgCl). Crystal structures of [2](PF(6)).2CH(3)CN, [3](PF(6))(2).CH(3)CN, [6](ClO(4))(2), and [7](ClO(4))(2).0.5H(2)O were determined. Crystal data: [2](PF(6)).2CH(3)CN, monoclinic, C2, a = 16.974(4) A, b = 8.064(3) A, c = 13.247(3) A, beta = 106.37(2) degrees, V = 1739.9(8) A(3), Z = 2; [3](PF(6))(2).CH(3)CN, triclinic, P1, a = 11.430(1) A, b = 19.234(3) A, c = 8.101(1) A, alpha = 99.43(1) degrees, beta = 93.89(1) degrees, gamma = 80.10(1) degrees, V = 1729.3(4) A(3), Z = 2; [6](ClO(4))(2), orthorhombic, Pnna, a = 8.147(1) A, b = 25.57(1) A, c = 14.770(4) A, V = 3076(3) A(3), Z = 4; [7](ClO(4))(2).0.5H(2)O, monoclinic, P2(1)/c, a = 10.046(7) A, b = 19.049(2) A, c = 15.696(3) A, beta = 101.46(3) degrees, V = 2943(2) A(3), Z = 4.  相似文献   

6.
The tetradentate imino-carboxylate ligand [L](2)(-) chelates the equatorial sites of Ni(II) to give the complex [Ni(L)(MeOH)(2)] in which a Ni(II) center is bound in an octahedral coordination environment with MeOH ligands occupying the axial sites. Lanthanide (Ln) and Group II metal ions (M) template the aggregation of six [Ni(L)] fragments into the octahedral cage aggregates (M[Ni(L)](6))(x)(+) (1: M = Sr(II); x = 2,2: M = Ba(II); x = 2, 3: M = La(III); x = 3, 4: M = Ce(III); x = 3, 5: M = Pr(III); x = 3, and 6: M = Nd(III); x = 3). In the presence of Group I cations, however, aggregates composed of the alkali metal-oxide cations template various cage compounds. Thus, Na(+) forms the trigonal bipyramidal [Na(5)O](3+) core within a tricapped trigonal prismatic [Ni(L)](9) aggregate to give ((Na(5)O) subset [Ni(L)](9)(MeOH)(3))(BF(4))(2).OH.CH(3)OH, 7. Li(+) and Na(+) together form a mixed Li(+)/Na(+) core comprising distorted trigonal bipyramidal [Na(3)Li(2)O](3+) within an approximately anti-square prismatic [Ni(L)](8) cage in ((Na(3)Li(2)O) subset [Ni(L)](8)(CH(3)OH)(1.3)(BF(4))(0.7))(BF(4))(2.3).(CH(3)OH)(2.75).(C(4)H(10)O)(0.5), 8, while in the presence of Li(+), a tetrahedral [Li(4)O](2+) core within a hexanuclear open cage [Ni(L)](6) in ((Li(4)O) subset [Ni(L)](6)(CH(3)OH)(3))2ClO(4).1.85CH(3)OH, 9, is produced. In the presence of H(2)O, the Cs(+) cation induces the aggregation of the [Ni(L)(H(2)O)(2)] monomer to give the cluster Cs(2)[Ni(L)(H(2)O)(2)](6).2I.4CH(3)OH.5.25H(2)O, 10. Analysis by electronic spectroscopy and mass spectrometry indicates that in solution the trend in stability follows the order 1-6 > 7 > 8 approximately 9. Magnetic susceptibility data indicate that there is net antiferromagnetic exchange between magnetic centers within the cages.  相似文献   

7.
Four bis-tetradentate N(4)-substituted-3,5-{bis[bis-N-(2-pyridinemethyl)]aminomethyl}-4H-1,2,4-triazole ligands, L(Tz1)-L(Tz4), differing only in the triazole N(4) substituent R (where R is amino, pyrrolyl, phenyl, or 4-tertbutylphenyl, respectively) have been synthesized, characterized, and reacted with M(II)(BF(4))(2)·6H(2)O (M(II) = Cu, Ni or Co) and Co(SCN)(2). Experiments using all 16 possible combinations of metal salt and L(TzR) were carried out: 14 pure complexes were obtained, 11 of which are dinuclear, while the other three are tetranuclear. The dinuclear complexes include two copper(II) complexes, [Cu(II)(2)(L(Tz2))(H(2)O)(4)](BF(4))(4) (2), [Cu(II)(2)(L(Tz4))(BF(4))(2)](BF(4))(2) (4); two nickel(II) complexes, [Ni(II)(2)(L(Tz1))(H(2)O)(3)(CH(3)CN)](BF(4))(4)·0.5(CH(3)CN) (5) and [Ni(II)(2)(L(Tz4))(H(2)O)(4)](BF(4))(4)·H(2)O (8); and seven cobalt(II) complexes, [Co(II)(2)(L(Tz1))(μ-BF(4))](BF(4))(3)·H(2)O (9), [Co(II)(2)(L(Tz2))(μ-BF(4))](BF(4))(3)·2H(2)O (10), [Co(II)(2)(L(Tz3))(H(2)O)(2)](BF(4))(4) (11), [Co(II)(2)(L(Tz4))(μ-BF(4))](BF(4))(3)·3H(2)O (12), [Co(II)(2)(L(Tz1))(SCN)(4)]·3H(2)O (13), [Co(II)(2)(L(Tz2))(SCN)(4)]·2H(2)O (14), and [Co(II)(2)(L(Tz3))(SCN)(4)]·H(2)O (15). The tetranuclear complexes are [Cu(II)(4)(L(Tz1))(2)(H(2)O)(2)(BF(4))(2)](BF(4))(6) (1), [Cu(II)(4)(L(Tz3))(2)(H(2)O)(2)(μ-F)(2)](BF(4))(6)·0.5H(2)O (3), and [Ni(II)(4)(L(Tz3))(2)(H(2)O)(4)(μ-F(2))](BF(4))(6)·6.5H(2)O (7). Single crystal X-ray structure determinations revealed different solvent content from that found by microanalysis of the bulk sample after drying under a vacuum and confirmed that 5', 8', 9', 11', 12', and 15' are dinuclear while 1' and 7' are tetranuclear. As expected, magnetic measurements showed that weak antiferromagnetic intracomplex interactions are present in 1, 2, 4, 7, and 8, stabilizing a singlet spin ground state. All seven of the dinuclear cobalt(II) complexes, 9-15, have similar magnetic behavior and remain in the [HS-HS] state between 300 and 1.8 K.  相似文献   

8.
A series of [Ni(P(R)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) complexes containing the cyclic diphosphine ligands [P(R)(2)N(Ph)(2) = 1,5-diaza-3,7-diphosphacyclooctane; R = benzyl (Bn), n-butyl (n-Bu), 2-phenylethyl (PE), 2,4,4-trimethylpentyl (TP), and cyclohexyl (Cy)] have been synthesized and characterized. X-ray diffraction studies reveal that the cations of [Ni(P(Bn)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) and [Ni(P(n-Bu)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) have distorted trigonal bipyramidal geometries. The Ni(0) complex [Ni(P(Bn)(2)N(Ph)(2))(2)] was also synthesized and characterized by X-ray diffraction studies and shown to have a distorted tetrahedral structure. These complexes, with the exception of [Ni(P(Cy)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2), all exhibit reversible electron transfer processes for both the Ni(II/I) and Ni(I/0) couples and are electrocatalysts for the production of H(2) in acidic acetonitrile solutions. The heterolytic cleavage of H(2) by [Ni(P(R)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) complexes in the presence of p-anisidine or p-bromoaniline was used to determine the hydride donor abilities of the corresponding [HNi(P(R)(2)N(Ph)(2))(2)](BF(4)) complexes. However, for the catalysts with the most bulky R groups, the turnover frequencies do not parallel the driving force for elimination of H(2), suggesting that steric interactions between the alkyl substituents on phosphorus and the nitrogen atom of the pendant amines play an important role in determining the overall catalytic rate.  相似文献   

9.
A series of mononuclear nickel(II) bis(diphosphine) complexes [Ni(P(Ph)(2)N(C6H4X)(2))(2)](BF(4))(2) (P(Ph)(2)N(C6H4X)(2) = 1,5-di(para-X-phenyl)-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane; X = OMe, Me, CH(2)P(O)(OEt)(2), Br, and CF(3)) have been synthesized and characterized. X-ray diffraction studies reveal that [Ni(P(Ph)(2)N(C6H4Me)(2))(2)](BF(4))(2) and [Ni(P(Ph)(2)N(C6H4OMe)(2))(2)](BF(4))(2) are tetracoordinate with distorted square planar geometries. The Ni(II/I) and Ni(I/0) redox couples of each complex are electrochemically reversible in acetonitrile with potentials that are increasingly cathodic as the electron-donating character of X is increased. Each of these complexes is an efficient electrocatalyst for hydrogen production at the potential of the Ni(II/I) couple. The catalytic rates generally increase as the electron-donating character of X is decreased, and this electronic effect results in the favorable but unusual situation of obtaining higher catalytic rates as overpotentials are decreased. Catalytic studies using acids with a range of pK(a) values reveal that turnover frequencies do not correlate with substrate acid pK(a) values but are highly dependent on the acid structure, with this effect being related to substrate size. Addition of water is shown to dramatically increase catalytic rates for all catalysts. With [Ni(P(Ph)(2)N(C6H4CH2P(O)(OEt)2)(2))(2)](BF(4))(2) using [(DMF)H](+)OTf(-) as the acid and with added water, a turnover frequency of 1850 s(-1) was obtained.  相似文献   

10.
The ligand (R,S)-Ph(2)PCH(2)CH(2)P(Ph)CH(2)CH(2)P(Ph)CH(2)CH(2)PPh(2), (R,S)-tetraphos, combines with silver(I) and gold(I) ions in the presence of hexafluorophosphate to diastereoselectively self-assemble the head-to-head (H,H) diastereomers of the double-stranded, dinuclear metal complexes [M(2)[(R,S)-tetraphos](2)](PF(6))(2) in which the two chiral metal centers in the complexes have M (R end of phosphine) and P (S end of phosphine) configurations. The crystal and molecular structures of the compounds have been determined: (H,H)-(M,P) -[Ag(2)[(R,S)-tetraphos](2)](PF(6))(2), monoclinic, P2(1)/c, a = 10.3784(2), b = 47.320(1), c = 17.3385(4) A, beta = 103.8963(5) degrees, Z = 4; (H,H)-(M,P)-[Au(2)[(R,S)-tetraphos](2)](PF(6))(2), monoclinic, P.2(1) (No. 4, c unique axis), a = 24.385(4), b = 46.175(3), c = 14.820(4) A, Z = 8. The complexes crystallize as racemic compounds in which the unit cell in each case contains equal numbers of enantiomorphic molecules of the cation and associated anions. The cations in both structures have similar side-by-side structures of idealized C(2) symmetry, the bulk helicity of each molecule in the solid state being due solely to the twist of the central ten-membered ring containing the two metal ions of opposite configuration, which has the chiral twist-boat-chair-boat conformation. When 1 equiv each of (R,S)-tetraphos, (R,R)-(+/-)-tetraphos, (S,S)-(+)-tetraphos, 2 equiv of Ph(2)PCH(2)CH(2)PPh(2) (dppe), and 7 equiv of [AuCl(SMe(2))] in dichloromethane are allowed to react for several minutes in the presence of an excess of ammonium hexafluorophosphate in water (two phases), the products are the double-stranded digold(I) complexes in which each ligand strand has recognized itself by stereoselective self-assembly, together with [Au(dppe)(2)]PF(6).  相似文献   

11.
A family of hexa-coordinated ruthenium(II) complexes of bis(N-pyridylimidazolylidenyl)methane (L) were prepared and structurally characterized. Carbene transfer reactions of [Ru(p-cymene)Cl(2)](2), [Ru(CO)(2)Cl(2)](n) and RuHCl(CO)(PPh(3))(3) with silver-NHC complexes in situ generated from [H(2)L](PF(6))(2) and Ag(2)O afforded [RuL(CH(3)CN)(2)](PF(6))(2) (1), [Ru(2)L(p-cymene)(2)Cl(2)](PF(6))(2) (2), [RuL(CO)(2)](PF(6))(2) (3) and [RuL(PPh(3))(2)](PF(6))(2) (4), respectively. The reactions of 1 towards several N- and P-donors were studied. The treatment of 1 with 1,10-phenanthroline resulted in the substitution of one pyridine and one acetonitrile molecule affording [RuL(phen)(CH(3)CN)](PF(6))(2) (5) as a mixture of two isomers. Reaction of 1,2-bis(diphenylphosphino)ethane (dppe) and 1 gave [RuL(dppe)(CH(3)CN)(2)](PF(6))(2) (7), in which two pyridines were substituted by a dppe ligand trans to two NHC groups. In contrast, reactions of 1 with ethane-1,2-diamine, propane-1,3-diamine and 3,5-dimethyl-1H-pyrazole led to the substitution of acetonitrile and subsequent N-H addition of the C≡N bond of the coordinated acetonitrile yielding [RuL(ethane-1,2-diamine)(N-(2-aminoethyl)acetimidamide)](PF(6))(2) (8), [RuL(propane-1,3-diamine)(N-(3-aminopropyl)acetimidamide)](PF(6))(2) (9) and RuL(1-(3,5-dimethyl-1H-pyrazol-1-yl)ethanimine)(CH(3)CN)](PF(6))(2) (10), respectively.  相似文献   

12.
Song LC  Li YL  Li L  Gu ZC  Hu QM 《Inorganic chemistry》2010,49(21):10174-10182
Three series of new Ni/Fe/S cluster complexes have been prepared and structurally characterized. One series of such complexes includes the linear type of (diphosphine)Ni-bridged double-butterfly Fe/S complexes [(μ-RS)(μ-S═CS)Fe(2)(CO)(6)](2)[Ni(diphosphine)] (1-6; R = Et, t-Bu, n-Bu, Ph; diphosphine = dppv, dppe, dppb), which were prepared by reactions of monoanions [(μ-RS)(μ-CO)Fe(2)(CO)(6)](-) (generated in situ from Fe(3)(CO)(12), Et(3)N, and RSH) with excess CS(2), followed by treatment of the resulting monoanions [(μ-RS)(μ-S═CS)Fe(2)(CO)(6)](-)with (diphosphine)NiCl(2). The second series consists of the macrocyclic type of (diphosphine)Ni-bridged double-butterfly Fe/S complexes [μ-S(CH(2))(4)S-μ][(μ-S═CS)Fe(2)(CO)(6)](2)[Ni(diphosphine)] (7-9; diphosphine = dppv, dppe, dppb), which were produced by the reaction of dianion [{μ-S(CH(2))(4)S-μ}{(μ-CO)Fe(2)(CO)(6)}(2)](2-) (formed in situ from Fe(3)(CO)(12), Et(3)N, and dithiol HS(CH(2))(4)SH with excess CS(2), followed by treatment of the resulting dianion [{μ-S(CH(2))(4)S-μ}{(μ-S═CS)Fe(2)(CO)(6)}(2)](2-) with (diphosphine)NiCl(2). However, more interestingly, when dithiol HS(CH(2))(4)SH (used for the production of 7-9) was replaced by HS(CH(2))(3)SH (a dithiol with a shorter carbon chain), the sequential reactions afforded another type of macrocyclic Ni/Fe/S complex, namely, the (diphosphine)Ni-bridged quadruple-butterfly Fe/S complexes [{μ-S(CH(2))(3)S-μ}{(μ-S═CS)Fe(2)(CO)(6)}(2)](2)[Ni(diphosphine)](2) (10-12; diphosphine = dppv, dppe, dppb). While a possible pathway for the production of the two types of novel metallomacrocycles 7-12 is suggested, all of the new complexes 1-12 were characterized by elemental analysis and spectroscopy and some of them by X-ray crystallography.  相似文献   

13.
The stable primary phosphine complexes trans-M(PH(2)Mes)(2)Cl(2) (1, M = Pd; 2, M = Pt; Mes = 2,4,6-(t-Bu)(3)C(6)H(2)) were prepared from Pd(PhCN)(2)Cl(2) and K(2)PtCl(4), respectively. Reaction of Pt(COD)Cl(2) (COD = 1,5-cyclooctadiene) with less bulky arylphosphines gives the unstable cis-Pt(PH(2)Ar)(2)Cl(2) (3, Ar = Is = 2,4,6-(i-Pr)(3)C(6)H(2); 4, Ar = Mes = 2,4,6-Me(3)C(6)H(2)). Spontaneous dehydrochlorination of 4 or direct reaction of K(2)PtCl(4) with 2 equiv of PH(2)Mes gives the insoluble primary phosphido-bridged dimer [Pt(PH(2)Mes)(&mgr;-PHMes)Cl](2) (5), which was characterized spectroscopically, including solid-state (31)P NMR studies. The reversible reaction of 5 with PH(2)Mes gives [Pt(PH(2)Mes)(2)(&mgr;-PHMes)](2)[Cl](2) (6), while PEt(3) yields [Pt(PEt(3))(2)(&mgr;-PHMes)](2)[Cl](2) (7), which on recrystallization forms [Pt(PEt(3))(&mgr;-PHMes)Cl](2) (8). Complex 5 and PPh(3) afford [Pt(PPh(3))(&mgr;-PHMes)Cl](2) (9). Addition of 1,2-bis(diphenylphosphino)ethane (dppe) to 5 gives the dicationic [Pt(dppe)(&mgr;-PHMes)](2)[Cl](2) (10-Cl), which was also obtained as the tetrafluoroborate salt 10-BF(4)() by deprotonation of [Pt(dppe)(PH(2)Mes)Cl][BF(4)] (11) with Et(3)N or by reaction of [Pt(dppe)(&mgr;-OH)](2)[BF(4)](2) with 2 equiv of PH(2)Mes. Complexes 8, 9, and 10-Cl.2CH(2)Cl(2).2H(2)O were characterized crystallographically.  相似文献   

14.
The interaction of methoxyethyl functionalized indene compounds (C(9)H(6)-1-R-3-CH(2)CH(2)OMe, R =t-BuNHSiMe(2)(1), Me(3)Si (2), H (3)) with [(Me(3)Si)(2)N](3)Ln(mu-Cl)Li(THF)(3)(Ln=Yb (4), Eu (5)) produced a series of new ytterbium(II) and europium(II) complexes via tandem silylamine elimination/homolysis of the Ln-N (Ln=Yb, Eu) bond. Treatment of the lanthanide(III) amides [(Me(3)Si)(2)N](3)Ln(mu-Cl)Li(THF)(3)(Ln=Yb (4), Eu (5) with 2 equiv. of, 1,2 and 3, respectively, produced, after workup, the ytterbium(II) complexes [eta5:eta1-Me(2)Si(MeOCH(2)CH(2)C(9)H(5))(NHBu-t)](2)Yb(II) (6), (eta5:eta1-MeOCH(2)CH(2)C(9)H(5)SiMe(3))(2)Yb(II) (7), (eta5:eta1-MeOCH(2)CH(2)C(9)H(6))(2)Yb(II)(8) and the corresponding europium(II) complexes [eta5:eta1-Me(2)Si(MeOCH(2)CH(2)C(9)H(5))(NHBu-t)](2)Eu(II)(9), (eta5:eta1-MeOCH(2)CH(2)C(9)H(5)SiMe(3))(2)Eu(II)(10) and (eta5:eta1-MeOCH(2)CH(2)C(9)H(6))(2)Eu(II)(11) in moderate to good yield. In contrast, interaction of the corresponding indene compounds 1, 2 or 3 with the lanthanide amides [(Me(3)Si)(2)N](3)Ln (Ln = Yb, Eu) was not observed, while addition of 0.5 equiv. of anhydrous LiCl to the corresponding reaction mixture produced, after workup, the corresponding ytterbium(II) or europium(II) complexes. All the new compounds were fully characterized by spectroscopic and elemental analyses. The structures of complexes, and were determined by single-crystal X-ray analyses. The catalytic activity of all the ytterbium(II) and europium(II) complexes on MMA polymerization was examined. It was found that all the ytterbium(II) and europium(II) complexes can function as single-component MMA polymerization catalysts. The temperature, solvent and ligand effects on the catalytic activity were studied.  相似文献   

15.
The labile nature of the coordinated water ligands in the organometallic aqua complex [Ru(dppe)(CO)(H(2)O)(3)][OTf](2) (1) (dppe = Ph(2)PCH(2)CH(2)PPh(2); OTf = OSO(2)CF(3)) has been investigated through substitution reactions with a range of incoming ligands. Dissolution of 1 in acetonitrile or dimethyl sulfoxide results in the facile displacement of all three waters to give [Ru(dppe)(CO)(CH(3)CN)(3)][OTf](2) (2) and [Ru(dppe)(CO)(DMSO)(3)][OTf](2) (3), respectively. Similarly, 1 reacts with Me(3)CNC to afford [Ru(dppe)(CO)(CNCMe(3))(3)][OTf](2) (4). Addition of 1 equiv of 2,2'-bipyridyl (bpy) or 4,4'-dimethyl-2,2'-bipyridyl (Me(2)bpy) to acetone/water solutions of 1 initially yields [Ru(dppe)(CO)(H(2)O)(bpy)][OTf](2) (5a) and [Ru(dppe)(CO)(H(2)O)(Me(2)bpy)][OTf](2) (6a), in which the coordinated water lies trans to CO. Compounds 5a and 6a rapidly rearrange to isomeric species (5b, 6b) in which the ligated water is trans to dppe. Further reactivity has been demonstrated for 6b, which, upon dissolution in CDCl(3), loses water and coordinates a triflate anion to afford [Ru(dppe)(CO)(OTf)(Me(2)bpy)][OTf] (7). Reaction of 1 with CH(3)CH(2)CH(2)SH gives the dinuclear bridging thiolate complex [[(dppe)Ru(CO)](2)(mu-SCH(2)CH(2)CH(3))(3)][OTf] (8). The reaction of 1 with CO in acetone/water is slow and yields the cationic hydride complex [Ru(dppe)(CO)(3)H][OTf] (9) via a water gas shift reaction. Moreover, the same mechanism can also be used to account for the previously reported synthesis of 1 upon reaction of Ru(dppe)(CO)(2)(OTf)(2) with water (Organometallics 1999, 18, 4068).  相似文献   

16.
The reactions of the bulky amino-bis(phenol) ligand Me(2)NCH(2)CH(2)N[CH(2)-3,5-Bu(t)(2)-C(6)H(2)OH-2](2)(1-H(2)) with Zn[N(SiMe(3))(2)](2)(4), [Mg[N(SiMe(3))(2)](2)](2)(5) and Ca[N(SiMe(3))(2)](2)(THF)(2)(6) yield the complexes 1-Zn, 1-Mg and 1-Ca in good yields. The X-ray structure of 1-Ca showed the complex to be dimeric, with calcium in a distorted octahedral coordination geometry. Five of the positions are occupied by an N(2)O(3) donor set, while the sixth is taken up by an intramolecular close contact to an o-Bu(t) substituent, a rare case of a Ca...H-C agostic interaction (Ca...H distances of 2.37 and 2.41 Angstroms). Another sterically hindered calcium complex, Ca[2-Bu(t)-6-(C(6)F(5)N=CH)C(6)H(3)O](2)(THF)(2).(C(7)H(8))(2/3)(7), was prepared by reaction of 6 with the iminophenol 2-Bu(t)-6-(C(6)F(5)N=CH)C(6)H(3)OH (3-H). According to the crystal structure 7 is monomeric and octahedral, with trans THF ligands. The complex Ti[N[CH(2)-3-Bu(t)-5-Me-C(6)H(2)O-2](2)[CH(2)CH(2)NMe(2)]](OPr(i))(2)(2-Ti) was prepared by treatment of Ti(OPr(i)(4)) with the new amino-bis(phenol) Me(2)NCH(2)CH(2)N[CH(2)-3-Bu(t)-5-Me-C(6)H(2)OH-2](2)(2-H(2)). The reduction of 2-Ti with sodium amalgam gave the titanium(III) salt Ti[N[CH(2)-3-Bu(t)-5-Me-C(6)H(2)O-2](2)[CH(2)CH(2)NMe(2)]](OPr(i))(2).Na(THF)(2)(8). A comparison of the X-ray structures of 2-Ti and 8 showed that the additional electron in 8 significantly reduced the intensity of the pi-bonding from the oxygen atoms of the isopropoxide groups to titanium. 1-Ca and 8 were active initiators for the ring-opening polymerisation of epsilon-caprolactone (up to 97% conversion of 200 equivalents in 2 hours) and yielded polymers with narrow molecular weight distributions.  相似文献   

17.
Reactivity of three novel Pd germylene species is presented. (Et(3)P)(2)PdGe[N(SiMe(3))(2)](2) (1) and (dppe)PdGe[N(SiMe(3))(2)](2) (6) react with COS to give the sulfide bridged species (Et3P)2Pd(mu S)Ge[N(SiMe3)2]2 (2) and (dppe)Pd(mu S)Ge-[N(SiMe3)2]2 (7) (dppe = (diphenylphosphino)ethane). (Ph(3)P)(2)PdGe[N(SiMe(3))(2)](2) (4) reacts with COS to give the disulfide bridged complex (Ph(3)P)(2)Pd(muS)(2)Ge[N(SiMe(3))(2)](2) (5) resulting in Pd-Ge bond cleavage. This phosphine dependent reactivity is explored. Crystal structures of 2, 5, 7, and the dimeric form of complex 2, (8), are reported. In the presence of excess germylene, complexes 2 and 5 are shown to partially regenerate their parent palladium germylene complexes, 1 and 4, respectively, via photolysis or heating.  相似文献   

18.
Hao J  Li J  Cui C  Roesky HW 《Inorganic chemistry》2011,50(16):7453-7459
Reaction of the aluminum hydroxide LAl(OH)[C(Ph)CH(Ph)] (1, L = HC[(CMe)(NAr)](2), Ar = 2,6-iPr(2)C(6)H(3)) with Y(CH(2)SiMe(3))(3)(THF)(2) yielded the oxo-bridged heterobimetallic yttrium dialkyl complex LAl[C(Ph)CH(Ph)](μ-O)Y(CH(2)SiMe(3))(2)(THF)(2) (2). Alkane elimination reaction of 2 with 2-(imino)pyrrole [NN]H ([NN]H = 2-(ArN═CH)-5-tBuC(4)H(2)NH) afforded the yttrium monoalkyl complex LAl[C(Ph)CH(Ph)] (μ-O)Y(CH(2)SiMe(3))[NN](THF)(2) (5). Alternatively, 5 can be prepared in high yield by reaction of 1 with [NN]Y(CH(2)SiMe(3))(2)(THF)(2) (3). The analogous samarium alkyl complex LAl[C(Ph)CH(Ph)](μ-O)Sm(CH(2)SiMe(3))[NN](THF)(2) (6) was prepared similarly. Reactions of 5 and 6 with 1 equiv of iPrOH yielded the corresponding alkoxyl complexes 7 and 8, respectively. The molecular structures of 3, 6, and 8 have been determined by X-ray single-crystal analysis. Complexes 2, 3, 5, 7, and 8 have been investigated as lactide polymerization initiators. The heterobimetallic alkoxyl 8 is highly active to yield high molecular weight (M(n) = 6.91 × 10(4)) polylactides with over 91% conversion at the lactide-to-initiator molar ratio of 2000.  相似文献   

19.
A series of copper(II) complexes with substituted phenanthroline ligands has been synthesized and characterized electronically and structurally. The compounds that have been prepared include the monosubstituted ligand complexes of the general formula [Cu(5-R-phen)(2)(CH(3)CN)](BF(4))(2), where R = NO(2), Cl, H, or Me, and the disubstituted ligand complex [Cu(5,6-Me(2)-phen)(2)(CH(3)CN)](BF(4))(2). The complexes [Cu(5-NO(2)-phen)(2)(CH(3)CN](BF(4))(2) (1), [Cu(5-Cl-phen)(2)(CH(3)CN)](BF(4))(2) (2), [Cu(o-phen)(2)(CH(3)CN)](BF(4))(2) (3), and [Cu(5-Me-phen)(2)(CH(3)CN)](BF(4))(2) (4) each crystallize in the space group C2/c with compounds 1, 2, and 4 comprising an isomorphous set. The disubstituted complex [Cu(5,6-Me(2)-phen)(2)(CH(3)CN)](BF(4))(2) (5) crystallizes in the space group P2(1)/c. Each structure is characterized by a distorted trigonal bipyramidal arrangement of ligands around the central copper atom with approximate or exact C(2) symmetry. The progression from electron-withdrawing to electron-donating substituents on the phenanthroline ligands correlates with less accessible reduction potentials for the bis-chelate complexes.  相似文献   

20.
Examination of the Y[N(SiMe(3))(2)](3)/KC(8) reduction system that allowed isolation of the (N(2))(3-) radical has led to the first evidence of Y(2+) in solution. The deep-blue solutions obtained from Y[N(SiMe(3))(2)](3) and KC(8) in THF at -35 °C under argon have EPR spectra containing a doublet at g(iso) = 1.976 with a 110 G hyperfine coupling constant. The solutions react with N(2) to generate (N(2))(2-) and (N(2))(3-) complexes {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-η(2):η(2)-N(2)) (1) and {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-η(2):η(2)-N(2))[K(THF)(6)] (2), respectively, and demonstrate that the Y[N(SiMe(3))(2)](3)/KC(8) reaction can proceed through an Y(2+) intermediate. The reactivity of (N(2))(3-) radical with proton sources was probed for the first time for comparison with the (N(2))(2-) and (N(2))(4-) chemistry. Complex 2 reacts with [Et(3)NH][BPh(4)] to form {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-N(2)H(2)), the first lanthanide (N(2)H(2))(2-) complex derived from dinitrogen, as well as 1 as a byproduct, consistent with radical disproportionation reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号