首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a multi-period problem of fair transfer prices and inventory holding policies in two enterprise supply chains. This problem was formulated as a mixed integer non-linear program by Gjerdrum et al. (Eur J Oper Res 143:582–599, 2002). Existing global optimization methods to solve this problem are computationally expensive. We propose a continuous approach based on difference of convex functions (DC) programming and DC Algorithms (DCA) for solving this combinatorial optimization problem. The problem is first reformulated as a DC program via an exact penalty technique. Afterward, DCA, an efficient local approach in non-convex programming framework, is investigated to solve the resulting problem. For globally solving this problem, we investigate a combined DCA-Branch and Bound algorithm. DCA is applied to get lower bounds while upper bounds are computed from a relaxation problem. The numerical results on several test problems show that the proposed algorithms are efficient: DCA provides a good integer solution in a short CPU time although it works on a continuous domain, and the combined DCA-Branch and Bound finds an \(\epsilon \) -optimal solution for large-scale problems in a reasonable time.  相似文献   

2.
In this paper we consider nonlinear integer optimization problems. Nonlinear integer programming has mainly been studied for special classes, such as convex and concave objective functions and polyhedral constraints. In this paper we follow an other approach which is not based on convexity or concavity. Studying geometric properties of the level sets and the feasible region, we identify cases in which an integer minimizer of a nonlinear program can be found by rounding (up or down) the coordinates of a solution to its continuous relaxation. We call this property rounding property. If it is satisfied, it enables us (for fixed dimension) to solve an integer programming problem in the same time complexity as its continuous relaxation. We also investigate the strong rounding property which allows rounding a solution to the continuous relaxation to the next integer solution and in turn yields that the integer version can be solved in the same time complexity as its continuous relaxation for arbitrary dimensions.  相似文献   

3.
In the last years many techniques in bioinformatics have been developed for the central and complex problem of optimally aligning biological sequences. In this paper we propose a new optimization approach based on DC (Difference of Convex functions) programming and DC Algorithm (DCA) for the multiple sequence alignment in its equivalent binary linear program, called “Maximum Weight Trace” problem. This problem is beforehand recast as a polyhedral DC program with the help of exact penalty techniques in DC programming. Our customized DCA, requiring solution of a few linear programs, is original because it converges after finitely many iterations to a binary solution while it works in a continuous domain. To scale-up large-scale (MSA), a constraint generation technique is introduced in DCA. Preliminary computational experiments on benchmark data show the efficiency of the proposed algorithm DCAMSA, which generally outperforms some standard algorithms.  相似文献   

4.
The paper investigates DC programming and DCA for both modeling discrete portfolio optimization under concave transaction costs as DC programs, and their solution. DC reformulations are established by using penalty techniques in DC programming. A suitable global optimization branch and bound technique is also developed where a DC relaxation technique is used for lower bounding. Numerical simulations are reported that show the efficiency of DCA and the globality of its computed solutions, compared to standard algorithms for nonconvex nonlinear integer programs.  相似文献   

5.
A continuation algorithm for the solution of max-cut problems is proposed in this paper. Unlike the available semi-definite relaxation, a max-cut problem is converted into a continuous nonlinear programming by employing NCP functions, and the resulting nonlinear programming problem is then solved by using the augmented Lagrange penalty function method. The convergence property of the proposed algorithm is studied. Numerical experiments and comparisons with the Geomeans and Williamson randomized algorithm made on some max-cut test problems show that the algorithm generates satisfactory solutions for all the test problems with much less computation costs.  相似文献   

6.
We consider a supply chain design problem where the decision maker needs to decide the number and locations of the distribution centers (DCs). Customers face random demand, and each DC maintains a certain amount of safety stock in order to achieve a certain service level for the customers it serves. The objective is to minimize the total cost that includes location costs and inventory costs at the DCs, and distribution costs in the supply chain. We show that this problem can be formulated as a nonlinear integer programming model, for which we propose a Lagrangian relaxation based solution algorithm. By exploring the structure of the problem, we find a low-order polynomial algorithm for the nonlinear integer programming problem that must be solved in solving the Lagrangian relaxation sub-problems. We present computational results for several instances of the problem with sizes ranging from 40 to 320 customers. Our results show the benefits of having an integrated supply chain design framework that includes location, inventory, and routing decisions in the same optimization model.  相似文献   

7.
In this paper, we investigate the production order scheduling problem derived from the production of steel sheets in Shanghai Baoshan Iron and Steel Complex (Baosteel). A deterministic mixed integer programming (MIP) model for scheduling production orders on some critical and bottleneck operations in Baosteel is presented in which practical technological constraints have been considered. The objective is to determine the starting and ending times of production orders on corresponding operations under capacity constraints for minimizing the sum of weighted completion times of all orders. Due to large numbers of variables and constraints in the model, a decomposition solution methodology based on a synergistic combination of Lagrangian relaxation, linear programming and heuristics is developed. Unlike the commonly used method of relaxing capacity constraints, this methodology alternatively relaxes constraints coupling integer variables with continuous variables which are introduced to the objective function by Lagrangian multipliers. The Lagrangian relaxed problem can be decomposed into two sub-problems by separating continuous variables from integer ones. The sub-problem that relates to continuous variables is a linear programming problem which can be solved using standard software package OSL, while the other sub-problem is an integer programming problem which can be solved optimally by further decomposition. The subgradient optimization method is used to update Lagrangian multipliers. A production order scheduling simulation system for Baosteel is developed by embedding the above Lagrangian heuristics. Computational results for problems with up to 100 orders show that the proposed Lagrangian relaxation method is stable and can find good solutions within a reasonable time.  相似文献   

8.
This paper is concerned with the development of an algorithm to solve continuous polynomial programming problems for which the objective function and the constraints are specified polynomials. A linear programming relaxation is derived for the problem based on a Reformulation Linearization Technique (RLT), which generates nonlinear (polynomial) implied constraints to be included in the original problem, and subsequently linearizes the resulting problem by defining new variables, one for each distinct polynomial term. This construct is then used to obtain lower bounds in the context of a proposed branch and bound scheme, which is proven to converge to a global optimal solution. A numerical example is presented to illustrate the proposed algorithm.  相似文献   

9.
An Exact Solution Method for Reliability Optimization in Complex Systems   总被引:2,自引:0,他引:2  
Systems reliability plays an important role in systems design, operation and management. Systems reliability can be improved by adding redundant components or increasing the reliability levels of subsystems. Determination of the optimal amount of redundancy and reliability levels among various subsystems under limited resource constraints leads to a mixed-integer nonlinear programming problem. The continuous relaxation of this problem in a complex system is a nonconvex nonseparable optimization problem with certain monotone properties. In this paper, we propose a convexification method to solve this class of continuous relaxation problems. Combined with a branch-and-bound method, our solution scheme provides an efficient way to find an exact optimal solution to integer reliability optimization in complex systems. This research was partially supported by the Research Grants Council of Hong Kong, grants CUHK4056/98E, CUHK4214/01E and 2050252, and the National Natural Science Foundation of China under Grants 79970107 and 10271073.  相似文献   

10.
This paper is concerned with the problem of assigning employees to a number of work centres taking into account employees' expressed preferences for specific shifts, off-days, and work centres. This particular problem is faced by the Kuwait National Petroleum Corporation that hires a firm to prepare schedules for assigning employees to about 86 stations distributed all over Kuwait. The number of variables in a mixed-integer programming model formulated for this problem is overwhelming, and hence, a direct solution to even the continuous relaxation of this model for relatively large-scale instances is inconceivable. However, we demonstrate that a column generation method, which exploits the special structures of the model, can readily solve the continuous relaxation of the model. Based on this column generation construct, we develop an effective heuristic to solve the problem. Computational results indicate that the proposed approach can facilitate the generation of good-quality schedules for even large-scale problem instances in a reasonable time.  相似文献   

11.
This paper formulates the continuous network design problem as a mathematical program with complementarity constraints (MPCC), with the upper level a nonlinear programming problem and the lower level a nonlinear complementarity problem. Unlike in most previous studies, the proposed framework is more general, in which both symmetric and asymmetric user equilibria can be captured. By applying the complementarity slackness condition of the lower-level problem, the original bilevel formulation can be converted into a single-level and smooth nonlinear programming problem. In order to solve the problem, a relaxation scheme is applied by progressively restricting the complementarity condition, which has been proven to be a rigorous approach under certain conditions. The model and solution algorithm are tested for well-known network design problems and promising results are shown.  相似文献   

12.
On the mixed integer signomial programming problems   总被引:1,自引:0,他引:1  
This paper proposes an approximate method to solve the mixed integer signomial programming problem, for which the objective function and the constraints may contain product terms with exponents and decision variables, which could be continuous or integral. A linear programming relaxation is derived for the problem based on piecewise linearization techniques, which first convert a signomial term into the sum of absolute terms; these absolute terms are then linearized by linearization strategies. In addition, a novel approach is included for solving integer and undefined problems in the logarithmic piecewise technique, which leads to more usefulness of the proposed method. The proposed method could reach a solution as close as possible to the global optimum.  相似文献   

13.
In this paper, we consider the maximum and minimum versions of degree-concentrated fault-tolerant spanning subgraph problem which has many applications in network communications. We prove that both this two problems are NP-hard. For the maximum version, we use DC programming relaxation to propose a heuristic algorithm. Numerical tests indicate that the proposed algorithm is efficient and effective. For the minimum version, we also formulate it as a DC program, and show that the DC algorithm does not perform well for this problem.  相似文献   

14.
We consider a class of knapsack problems that include setup costs for families of items. An individual item can be loaded into the knapsack only if a setup cost is incurred for the family to which it belongs. A mixed integer programming formulation for the problem is provided along with exact and heuristic solution methods. The exact algorithm uses cross decomposition. The proposed heuristic gives fast and tight bounds. In addition, a Benders decomposition algorithm is presented to solve the continuous relaxation of the problem. This method for solving the continuous relaxation can be used to improve the performance of a branch and bound algorithm for solving the integer problem. Computational performance of the algorithms are reported and compared to CPLEX.  相似文献   

15.
Probabilistically constrained quadratic programming (PCQP) problems arise naturally from many real-world applications and have posed a great challenge in front of the optimization society for years due to the nonconvex and discrete nature of its feasible set. We consider in this paper a special case of PCQP where the random vector has a finite discrete distribution. We first derive second-order cone programming (SOCP) relaxation and semidefinite programming (SDP) relaxation for the problem via a new Lagrangian decomposition scheme. We then give a mixed integer quadratic programming (MIQP) reformulation of the PCQP and show that the continuous relaxation of the MIQP is exactly the SOCP relaxation. This new MIQP reformulation is more efficient than the standard MIQP reformulation in the sense that its continuous relaxation is tighter than or at least as tight as that of the standard MIQP. We report preliminary computational results to demonstrate the tightness of the new convex relaxations and the effectiveness of the new MIQP reformulation.  相似文献   

16.
This paper proposes a mixed integer linear programming model and solution algorithm for solving supply chain network design problems in deterministic, multi-commodity, single-period contexts. The strategic level of supply chain planning and tactical level planning of supply chain are aggregated to propose an integrated model. The model integrates location and capacity choices for suppliers, plants and warehouses selection, product range assignment and production flows. The open-or-close decisions for the facilities are binary decision variables and the production and transportation flow decisions are continuous decision variables. Consequently, this problem is a binary mixed integer linear programming problem. In this paper, a modified version of Benders’ decomposition is proposed to solve the model. The most difficulty associated with the Benders’ decomposition is the solution of master problem, as in many real-life problems the model will be NP-hard and very time consuming. In the proposed procedure, the master problem will be developed using the surrogate constraints. We show that the main constraints of the master problem can be replaced by the strongest surrogate constraint. The generated problem with the strongest surrogate constraint is a valid relaxation of the main problem. Furthermore, a near-optimal initial solution is generated for a reduction in the number of iterations.  相似文献   

17.
When regarded as a shortest route problem, an integer program can be seen to have a particularly simple structure. This allows the development of an algorithm for finding thek th best solution to an integer programming problem with max{O(kmn), O(k logk)} operations. Apart from its value in the parametric study of an optimal solution, the approach leads to a general integer programming algorithm consisting of (1) problem relaxation, (2) solution of the relaxed problem parametrically by dynamic programming, and (3) generation ofk th best solutions until a feasible solution is found. Elementary methods based on duality for reducingk for a given problem relaxation are then outlined, and some examples and computational aspects are discussed.  相似文献   

18.
An effective continuous algorithm is proposed to find approximate solutions of NP-hardmax-cut problems.The algorithm relaxes the max-cut problem into a continuous nonlinearprogramming problem by replacing n discrete constraints in the original problem with onesingle continuous constraint.A feasible direction method is designed to solve the resultingnonlinear programming problem.The method employs only the gradient evaluations ofthe objective function,and no any matrix calculations and no line searches are required.This greatly reduces the calculation cost of the method,and is suitable for the solutionof large size max-cut problems.The convergence properties of the proposed method toKKT points of the nonlinear programming are analyzed.If the solution obtained by theproposed method is a global solution of the nonlinear programming problem,the solutionwill provide an upper bound on the max-cut value.Then an approximate solution to themax-cut problem is generated from the solution of the nonlinear programming and providesa lower bound on the max-cut value.Numerical experiments and comparisons on somemax-cut test problems(small and large size)show that the proposed algorithm is efficientto get the exact solutions for all small test problems and well satisfied solutions for mostof the large size test problems with less calculation costs.  相似文献   

19.
Consider the relaxation of an integer programming (IP) problem in which the feasible region is replaced by the intersection of the linear programming (LP) feasible region and the corner polyhedron for a particular LP basis. Recently a primal-dual ascent algorithm has been given for solving this relaxation. Given an optimal solution of this relaxation, we state criteria for selecting a new LP basis for which the associated relaxation is stronger. These criteria may be successively applied to obtain either an optimal IP solution or a lower bound on the cost of such a solution. Conditions are given for equality of the convex hull of feasible IP solutions and the intersection of all corner polyhedra.  相似文献   

20.
This paper deals with optimizing the cost of set up, transportation and inventory of a multi-stage production system in presence of bottleneck. The considered optimization model is a mixed integer nonlinear program. We propose two methods based on DC (Difference of Convex) programming and DCA (DC Algorithm)—an innovative approach in nonconvex programming framework. The mixed integer nonlinear problem is first reformulated as a DC program and then DCA is developed to solve the resulting problem. In order to globally solve the problem, we combine DCA with a Branch and Bound algorithm (BB-DCA). A convex minorant of the objective function is introduced. DCA is used to compute upper bounds while lower bounds are calculated from a convex relaxation problem. The numerical results compared with those of COUENNE (http://www.coin-or.org/download/binary/Couenne/), a solver for mixed integer nonconvex programming, show the rapidity and the ?-globality of DCA in almost cases, as well as the efficiency of the combined DCA-Branch and Bound algorithm. We also propose a simple heuristic algorithm which is proved by experimental results to be better than an existing heuristic in the literature for this problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号