首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mixed-integer nonlinear programming (MINLP) problems involving general constraints and objective functions with continuous and integer variables occur frequently in engineering design, chemical process industry and management. Although many optimization approaches have been developed for MINLP problems, these methods can only handle signomial terms with positive variables or find a local solution. Therefore, this study proposes a novel method for solving a signomial MINLP problem with free variables to obtain a global optimal solution. The signomial MINLP problem is first transformed into another one containing only positive variables. Then the transformed problem is reformulated as a convex mixed-integer program by the convexification strategies and piecewise linearization techniques. A global optimum of the signomial MINLP problem can finally be found within the tolerable error. Numerical examples are also presented to demonstrate the effectiveness of the proposed method.  相似文献   

2.
Many global optimization approaches for solving signomial geometric programming problems are based on transformation techniques and piecewise linear approximations of the inverse transformations. Since using numerous break points in the linearization process leads to a significant increase in the computational burden for solving the reformulated problem, this study integrates the range reduction techniques in a global optimization algorithm for signomial geometric programming to improve computational efficiency. In the proposed algorithm, the non-convex geometric programming problem is first converted into a convex mixed-integer nonlinear programming problem by convexification and piecewise linearization techniques. Then, an optimization-based approach is used to reduce the range of each variable. Tightening variable bounds iteratively allows the proposed method to reach an approximate solution within an acceptable error by using fewer break points in the linearization process, therefore decreasing the required CPU time. Several numerical experiments are presented to demonstrate the advantages of the proposed method in terms of both computational efficiency and solution quality.  相似文献   

3.
In this paper, we propose a mixed integer optimization approach for solving the inventory problem with variable lead time, crashing cost, and price–quantity discount. A linear programming relaxation based on piecewise linearization techniques is derived for the problem. It first converts non-linear terms into the sum of absolute terms, which are then linearized by goal programming techniques and linearization approaches. The proposed method can eliminate the complicated multiple-step solution process used in the traditional inventory models. In addition, the proposed model allows constraints to be added by the inventory decision-maker as deemed appropriate in real-world situations.  相似文献   

4.
Conventional methods of solving nonconvex separable programming (NSP) problems by mixed integer programming methods requires adding numerous 0–1 variables. In this work, we present a new method of deriving the global optimum of a NSP program using less number of 0–1 variables. A separable function is initially expressed by a piecewise linear function with summation of absolute terms. Linearizing these absolute terms allows us to convert a NSP problem into a linearly mixed 0–1 program solvable for reaching a solution which is extremely close to the global optimum.  相似文献   

5.
In this paper, two new methods are proposed for solving a seasonal demand problem with variable lead-time and resource constraints. Despite its significance, no study has been done on such problem to obtain the best policy. First, in order to solve the variable lead time, a linear programming relaxation using piecewise linearization techniques is derived. Then, a mixed integer program with linearization techniques is constructed for the seasonal demand problem. Finally, some illustrative examples are included to demonstrate the applicability of the proposed models.  相似文献   

6.
Managing shelf space is critical for retailers to attract customers and optimize profits. This article develops a shelf-space allocation optimization model that explicitly incorporates essential in-store costs and considers space- and cross-elasticities. A piecewise linearization technique is used to approximate the complicated nonlinear space-allocation model. The approximation reformulates the non-convex optimization problem into a linear mixed integer programming (MIP) problem. The MIP solution not only generates near-optimal solutions for large scale optimization problems, but also provides an error bound to evaluate the solution quality. Consequently, the proposed approach can solve single category-shelf space management problems with as many products as are typically encountered in practice and with more complicated cost and profit structures than currently possible by existing methods. Numerical experiments show the competitive accuracy of the proposed method compared with the mixed integer nonlinear programming shelf-space model. Several extensions of the main model are discussed to illustrate the flexibility of the proposed methodology.  相似文献   

7.
This paper is concerned with a portfolio optimization problem under concave and piecewise constant transaction cost. We formulate the problem as nonconcave maximization problem under linear constraints using absolute deviation as a measure of risk and solve it by a branch and bound algorithm developed in the field of global optimization. Also, we compare it with a more standard 0–1 integer programming approach. We will show that a branch and bound method elaborating the special structure of the problem can solve the problem much faster than the state-of-the integer programming code.  相似文献   

8.
This paper presents a global optimization approach for solving signomial geometric programming problems. In most cases nonconvex optimization problems with signomial parts are difficult, NP-hard problems to solve for global optimality. But some transformation and convexification strategies can be used to convert the original signomial geometric programming problem into a series of standard geometric programming problems that can be solved to reach a global solution. The tractability and effectiveness of the proposed successive convexification framework is demonstrated by seven numerical experiments. Some considerations are also presented to investigate the convergence properties of the algorithm and to give a performance comparison of our proposed approach and the current methods in terms of both computational efficiency and solution quality.  相似文献   

9.
In this paper, we present a global optimization method for solving nonconvex mixed integer nonlinear programming (MINLP) problems. A convex overestimation of the feasible region is obtained by replacing the nonconvex constraint functions with convex underestimators. For signomial functions single-variable power and exponential transformations are used to obtain the convex underestimators. For more general nonconvex functions two versions of the so-called αBB-underestimator, valid for twice-differentiable functions, are integrated in the actual reformulation framework. However, in contrast to what is done in branch-and-bound type algorithms, no direct branching is performed in the actual algorithm. Instead a piecewise convex reformulation is used to convexify the entire problem in an extended variable-space, and the reformulated problem is then solved by a convex MINLP solver. As the piecewise linear approximations are made finer, the solution to the convexified and overestimated problem will form a converging sequence towards a global optimal solution. The result is an easily-implementable algorithm for solving a very general class of optimization problems.  相似文献   

10.
Retail shelf space allocation problem is well known in literature. In this paper, we make three contributions to retail shelf space allocation problem considering space elasticity (SSAPSE). First, we reformulate an existing nonlinear model for SSAPSE to an integer programming (IP) model using piecewise linearization. Second, we show that the linear programming relaxation of the proposed IP model produces tight upper bound. Third, we develop a heuristic that consistently produces near optimal solutions for randomly generated instances of problems with size (products, shelves) varying from (25, 5) to (200, 50) within a minute of CPU time.  相似文献   

11.
A very frequent problem in advanced mathematical programming models is the linear approximation of convex and non-convex non-linear functions in either the constraints or the objective function of an otherwise linear programming problem. In this paper, based on a model that has been developed for the evaluation and selection of pollutant emission control policies and standards, we shall study several ways of representing non-linear functions of a single argument in mixed integer, separable and related programming terms. Thus we shall study the approximations based on piecewise constant, piecewise adjacent, piecewise non-adjacent additional and piecewise non-adjacent segmented functions. In each type of modelization we show the problem size and optimization results of using the following techniques: separable programming, mixed integer programming with Special Ordered Sets of type 1, linear programming with Special Ordered Sets of type 2 and mixed integer programming using strategies based on the quasi-integrality of the binary variables.  相似文献   

12.
We study the hub covering problem which, so far, has remained one of the unstudied hub location problems in the literature. We give a combinatorial and a new integer programming formulation of the hub covering problem that is different from earlier integer programming formulations. Both new and old formulations are nonlinear binary integer programs. We give three linearizations for the old model and one linearization for the new one and test their computational performances based on 80 instances of the CAB data set. Computational results indicate that the linear version of the new model performs significantly better than the most successful linearization of the old model both in terms of average and maximum CPU times as well as in core storage requirements.  相似文献   

13.
This paper presents a global optimization approach for solving signomial geometric programming (SGP) problems. We employ an accelerated extended cutting plane (ECP) approach integrated with piecewise linear (PWL) approximations to solve the global optimization of SGP problems. In this approach, we separate the feasible regions determined by the constraints into convex and nonconvex ones in the logarithmic domain. In the nonconvex feasible regions, the corresponding constraint functions are converted into mixed integer linear constraints using PWL approximations, while the other constraints with convex feasible regions are handled by the ECP method. We also use pre-processed initial cuts and batched cuts to accelerate the proposed algorithm. Numerical results show that the proposed approach can solve the global optimization of SGP problems efficiently and effectively.  相似文献   

14.
任燕  陈伟 《运筹学学报》2010,14(1):66-76
本文主要讨论了二次整数规划问题的线性化方法.在目标函数为二次函数的情况下,我们讨论了带有二次约束的整数规划问题的线性化方法,并将文献中对二次0-1问题的研究拓展为对带有盒约束的二次整数规划问题的研究.最终将带有盒约束的二次整数规划问题转化为线性混合本文主要讨论了二次整数规划问题的线性化方法.在目标函数为二次函数的情况下,我们讨论了带有二次约束的整数规划问题的线性化方法,并将文献中对二次0-1问题的研究拓展为对带有盒约束的二次整数规划问题的研究.最终将带有盒约束的二次整数规划问题转化为线性混合0-1整数规划问题,然后利用Ilog-cplex或Excel软件中的规划求解工具进行求解,从而解决原二次整数规划.  相似文献   

15.
Free-sign pure discrete signomial (FPDS) terms are vital to and are frequently observed in many nonlinear programming problems, such as geometric programming, generalized geometric programming, and mixed-integer non-linear programming problems. In this study, all variables in the FPDS term are discrete variables. Any improvement to techniques for linearizing FPDS term contributes significantly to the solving of nonlinear programming problems; therefore, relative techniques have continually been developed. This study develops an improved exact method to linearize a FPDS term into a set of linear programs with minimal logarithmic numbers of zero-one variables and constraints. This method is tighter than current methods. Various numerical experiments demonstrate that the proposed method is significantly more efficient than current methods, especially when the problem scale is large.  相似文献   

16.
The aim of this paper is to propose an integrated model for resource planning in power systems by taking into account both supply and demand sides options simultaneously. At supply-side, investment in generation capacity and transmission lines is considered. Demand side management (DSM) technologies are also incorporated to correct the shape of the load duration curve in terms of peak clipping and load shifting programmes. A mixed integer non-linear programming model is developed to find the optimal location and timing of electricity generation/transmission as well as DSM options. To solve the resulting complex model, nonlinearity caused by transmission loss terms are first eliminated using the piecewise linearization technique. Then, a Benders decomposition (BD) algorithm is developed to solve the linearized model. The performance of the proposed BD algorithm is validated via applying it to the 6-bus Garver test system and a modified 21-bus IEEE reliability test system.  相似文献   

17.
This paper deals with the global solution of the general multi-parametric mixed integer linear programming problem with uncertainty in the entries of the constraint matrix, the right-hand side vector, and in the coefficients of the objective function. To derive the piecewise affine globally optimal solution, the steps of a multi-parametric branch-and-bound procedure are outlined, where McCormick-type relaxations of bilinear terms are employed to construct suitable multi-parametric under- and overestimating problems. The alternative of embedding novel piecewise affine relaxations of bilinear terms in the proposed algorithmic procedure is also discussed.  相似文献   

18.
《Optimization》2012,61(7):989-1002
The rectangular packing problem aims to seek the best way of placing a given set of rectangular pieces within a large rectangle of minimal area. Such a problem is often constructed as a quadratic mixed-integer program. To find the global optimum of a rectangular packing problem, this study transforms the original problem as a mixed-integer linear programming problem by logarithmic transformations and an efficient piecewise linearization approach that uses a number of binary variables and constraints logarithmic in the number of piecewise line segments. The reformulated problem can be solved to obtain an optimal solution within a tolerable error. Numerical examples demonstrate the computational efficiency of the proposed method in globally solving rectangular packing problems.  相似文献   

19.
Generalized geometric programming (GGP) problems occur frequently in engineering design and management. Some exponential-based decomposition methods have been developed for solving global optimization of GGP problems. However, the use of logarithmic/exponential transformations restricts these methods to handle the problems with strictly positive variables. This paper proposes a technique for treating non-positive variables with integer powers in GGP problems. By means of variable transformation, the GGP problem with non-positive variables can be equivalently solved with another one having positive variables. In addition, we present some computationally efficient convexification rules for signomial terms to enhance the efficiency of the optimization approach. Numerical examples are presented to demonstrate the usefulness of the proposed method in GGP problems with non-positive variables.  相似文献   

20.
带自由变量的广义几何规划(FGGP)问题广泛出现在证券投资和工程设计等实际问题中.利用等价转换及对目标函数和约束函数的凸下界估计,提出一种求(FGGP)问题全局解的凸松弛方法.与已有方法相比,方法可处理符号项中含有更多变量的(FGGP)问题,且在最后形成的凸松弛问题中含有更少的变量和约束,从而在计算上更容易实现.最后数值实验表明文中方法是可行和有效的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号