首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In this paper, we prove that every lax generalized Veronesean embedding of the Hermitian unital ${\mathcal{U}}$ of ${\mathsf{PG}(2,\mathbb{L}), \mathbb{L}}$ a quadratic extension of the field ${\mathbb{K}}$ and ${|\mathbb{K}| \geq 3}$ , in a ${\mathsf{PG}(d,\mathbb{F})}$ , with ${\mathbb{F}}$ any field and d ≥ 7, such that disjoint blocks span disjoint subspaces, is the standard Veronesean embedding in a subgeometry ${\mathsf{PG}(7,\mathbb{K}^{\prime})}$ of ${\mathsf{PG}(7,\mathbb{F})}$ (and d = 7) or it consists of the projection from a point ${p \in \mathcal{U}}$ of ${\mathcal{U}{\setminus} \{p\}}$ from a subgeometry ${\mathsf{PG}(7,\mathbb{K}^{\prime})}$ of ${\mathsf{PG}(7,\mathbb{F})}$ into a hyperplane ${\mathsf{PG}(6,\mathbb{K}^{\prime})}$ . In order to do so, when ${|\mathbb{K}| >3 }$ we strongly use the linear representation of the affine part of ${\mathcal{U}}$ (the line at infinity being secant) as the affine part of the generalized quadrangle ${\mathsf{Q}(4,\mathbb{K})}$ (the solid at infinity being non-singular); when ${|\mathbb{K}| =3}$ , we use the connection of ${\mathcal{U}}$ with the generalized hexagon of order 2.  相似文献   

2.
In De Winter and Thas (Des Codes Cryptogr, 32, 153–166, 2004) a semipartial geometry ${\mathcal{S}(\overline{\mathcal{U})}}$ was constructed from any Buekenhout–Metz unital ${\mathcal{U}}$ in PG(2,q2), and it was shown that, although having the same parameters, ${\mathcal{S}(\overline{\mathcal{U})}\not\cong T_2^*(\mathcal{U})}$ , where ${T_2^*\mathcal{U}}$ is the semipartial geometry arising from the linear representation of ${\mathcal{U}}$ . In this note, we will first briefly overview what is known on the geometry ${\mathcal{S}(\overline{\mathcal{U})}}$ (providing shortened unpublished proofs for most results). Then we answer the following question of G. Ebert affirmatively: “Do non-isomorphic Buekenhout–Metz unitals ${\mathcal{U}_1}$ and ${\mathcal{U}_2}$ yield non-isomorphic semipartial geometries ${\mathcal{S}(\overline{\mathcal{U}}_1)}$ and ${\mathcal{S}(\overline{\mathcal{U}}_2)}$ ?”.  相似文献   

3.
Let ${\mathcal{L}}$ and ${\mathcal{L}_0}$ be the binary codes generated by the column ${\mathbb{F}_2}$ -null spaces of the incidence matrices of external points versus passant lines and internal points versus secant lines with respect to a conic in PG(2, q), respectively. We confirm the conjectures on the dimensions of ${\mathcal{L}}$ and ${\mathcal{L}_0}$ using methods from both finite geometry and modular representation theory.  相似文献   

4.
Let ${\mathcal{F}}$ be a (0, 1) matrix. A (0, 1) matrix ${\mathcal{M}}$ is said to have ${\mathcal{F}}$ as a configuration if there is a submatrix of ${\mathcal{M}}$ which is a row and column permutation of ${\mathcal{F}}$ . We say that a matrix ${\mathcal{M}}$ is simple if it has no repeated columns. For a given ${v \in \mathbb{N}}$ , we shall denote by forb ${(v, \mathcal{F})}$ the maximum number of columns in a simple (0, 1) matrix with v rows for which ${\mathcal{F}}$ does not occur as a configuration. We say that a matrix ${\mathcal{M}}$ is maximal for ${\mathcal{F}}$ if ${\mathcal{M}}$ has forb ${(v, \mathcal{F})}$ columns. In this paper we show that for certain natural choices of ${\mathcal{F}}$ , forb ${(v, \mathcal{F})\leq\frac{\binom{v}{t}}{t+1}}$ . In particular this gives an extremal characterization for Steiner t-designs as maximal (0, 1) matrices in terms of certain forbidden configurations.  相似文献   

5.
In classical linear algebra, extending the ring of scalars of a free module gives rise to a new free module containing an isomorphic copy of the former and satisfying a certain universal property. Also, given two free modules on the same ring of scalars and a morphism between them, enlarging the ring of scalars results in obtaining a new morphism having the nice property that it coincides with the initial map on the isomorphic copy of the initial free module in the new one. We investigate these problems in the category of free ${\mathcal{A}}$ -modules, where ${\mathcal{A}}$ is an ${\mathbb{R}}$ -algebra sheaf. Complexification of free ${\mathcal{A}}$ -modules, which is defined to be the process of obtaining new free ${\mathcal{A}}$ -modules by enlarging the ${\mathbb{R}}$ -algebra sheaf ${\mathcal{A}}$ to a ${\mathbb{C}}$ -algebra sheaf, denoted ${\mathcal{A}_\mathbb{C}}$ , is an important particular case (see Proposition 2.1, Proposition 3.1). Attention, on the one hand, is drawn on the sub- ${_{\mathbb{R}}\mathcal{A}}$ -sheaf of almost complex structures on the sheaf ${{_\mathbb{R}}\mathcal{A}^{2n}}$ , the underlying ${\mathbb{R}}$ -algebra sheaf of a ${\mathbb{C}}$ -algebra sheaf ${\mathcal{A}}$ , and on the other hand, on the complexification of the functor ${\mathcal{H}om_\mathcal {A}}$ , with ${\mathcal{A}}$ an ${\mathbb{R}}$ -algebra sheaf.  相似文献   

6.
It is conjectured that the set ${\mathcal {G}}$ of the primitive roots modulo p has no decomposition (modulo p) of the form ${\mathcal {G}= \mathcal {A} +\mathcal {B}}$ with ${|\mathcal {A}|\ge 2}$ , ${|\mathcal {B} |\ge 2}$ . This conjecture seems to be beyond reach but it is shown that if such a decomposition of ${\mathcal {G}}$ exists at all, then ${|\mathcal {A} |}$ , ${|\mathcal {B} |}$ must be around p 1/2, and then this result is applied to show that ${\mathcal {G}}$ has no decomposition of the form ${\mathcal {G} =\mathcal {A} + \mathcal {B} + \mathcal {C}}$ with ${|\mathcal {A} |\ge 2}$ , ${|\mathcal {B} |\ge 2}$ , ${|\mathcal {C} |\ge 2}$ .  相似文献   

7.
In a natural way, we can ??lift?? any operation defined on a set A to an operation on the set of all non-empty subsets of A and obtain from any algebra ( ${A, \Omega}$ ) its power algebra of subsets. G. Gr?tzer and H. Lakser proved that for a variety ${\mathcal{V}}$ , the variety ${\mathcal{V}\Sigma}$ generated by power algebras of algebras in ${\mathcal{V}}$ satisfies precisely the consequences of the linear identities true in ${\mathcal{V}}$ . For certain types of algebras, the sets of their subalgebras form subalgebras of their power algebras. They are called the algebras of subalgebras. In this paper, we partially solve a long-standing problem concerning identities satisfied by the variety ${\mathcal{VS}}$ generated by algebras of subalgebras of algebras in a given variety ${\mathcal{V}}$ . We prove that if a variety ${\mathcal{V}}$ is idempotent and entropic and the variety ${\mathcal{V}\Sigma}$ is locally finite, then the variety ${\mathcal{VS}}$ is defined by the idempotent and linear identities true in ${\mathcal{V}}$ .  相似文献   

8.
Let ${\mathcal{K}}$ be a family of simply connected sets in the plane. If every countable subfamily of ${\mathcal{K}}$ has an intersection that is starshaped via orthogonally convex paths, then ${\mathcal{K}}$ itself has such an intersection. For the d-dimensional case, let ${\mathcal{K}}$ be a family of compact sets in ${\mathbb{R}^d}$ . If every finite subfamily of ${\mathcal{K}}$ has an intersection that is starshaped via orthogonally convex paths, again ${\mathcal{K}}$ itself has such an intersection.  相似文献   

9.
Given a Lie group G with a bi-invariant metric and a compact Lie subgroup K, Bittencourt and Ripoll used the homogeneous structure of quotient spaces to define a Gauss map ${\mathcal{N}:M^{n}\rightarrow{\mathbb{S}}}$ on any hypersupersurface ${M^{n}\looparrowright G/K}$ , where ${{\mathbb{S}}}$ is the unit sphere of the Lie algebra of G. It is proved in Bittencourt and Ripoll (Pacific J Math 224:45–64, 2006) that M n having constant mean curvature (CMC) is equivalent to ${\mathcal{N}}$ being harmonic, a generalization of a Ruh–Vilms theorem for submanifolds in the Euclidean space. In particular, when n = 2, the induced quadratic differential ${\mathcal{Q}_{\mathcal{N}}:=(\mathcal{N}^{\ast}g)^{2,0}}$ is holomorphic on CMC surfaces of G/K. In this paper, we take ${G/K={\mathbb{S}}^{2}\times{\mathbb{R}}}$ and compare ${\mathcal{Q}_{\mathcal{N}}}$ with the Abresch–Rosenberg differential ${\mathcal{Q}}$ , also holomorphic for CMC surfaces. It is proved that ${\mathcal{Q}=\mathcal{Q}_{\mathcal{N}}}$ , after showing that ${\mathcal{N}}$ is the twisted normal given by (1.5) herein. Then we define the twisted normal for surfaces in ${{\mathbb{H}}^{2}\times{\mathbb{R}}}$ and prove that ${\mathcal{Q}=\mathcal{Q}_{\mathcal{N}}}$ as well. Within the unified model for the two product spaces, we compute the tension field of ${\mathcal{N}}$ and extend to surfaces in ${{\mathbb{H}}^{2}\times{\mathbb{R}}}$ the equivalence between the CMC property and the harmonicity of ${\mathcal{N}.}$   相似文献   

10.
Let ${\mathcal{L}}$ be a ${\mathcal{J}}$ -subspace lattice on a Banach space X over the real or complex field ${\mathbb{F}}$ with dim X ≥ 2 and Alg ${\mathcal{L}}$ be the associated ${\mathcal{J}}$ -subspace lattice algebra. For any scalar ${\xi \in \mathbb{F}}$ , there is a characterization of any linear map L : Alg ${\mathcal{L} \rightarrow {\rm Alg} {\mathcal{L}}}$ satisfying ${L([A,B]_\xi) = [L(A),B]_\xi + [A,L(B)]_\xi}$ for any ${A, B \in{\rm Alg} {\mathcal{L}}}$ with AB = 0 (rep. ${[A,B]_ \xi = AB - \xi BA = 0}$ ) given. Based on these results, a complete characterization of (generalized) ξ-Lie derivations for all possible ξ on Alg ${\mathcal{L}}$ is obtained.  相似文献   

11.
Let ${\mathcal{A}}$ be a ${\mathbb{C}}$ -algebra, δ be a derivation on ${\mathcal{A}}$ and ${\mathcal{M}}$ be a left ${\mathcal{A}}$ -module. A linear map ${\tau : \mathcal{M} \rightarrow \mathcal{M}}$ is called a generalized derivation relative to δ if ${\tau(am)=a\tau(m)+\delta(a)m\,(a \in \mathcal{A}, m \in \mathcal{M})}$ . In this article first we study the existence of generalized derivations. In particular we show that free modules and projective modules always have nontrivial generalized derivations relative to nonzero derivations of ${\mathcal{A}}$ . Then we investigate the invariance of prime submodules under generalized derivations. Specifically we show that every minimal prime submodule of ${\mathcal{M}}$ is invariant under every generalized derivation. Moreover we obtain analogs of Posner’s theorem for generalized derivations. In the case that ${\mathcal{A}}$ is a Banach algebra and ${\mathcal{M}}$ is a Banach left ${\mathcal{A}}$ -module, we study the existence of continuous generalized derivations and automatic continuity of generalized derivations.  相似文献   

12.
Let ${\mathcal{P}}$ be a nonparametric probability model consisting of smooth probability densities and let ${\hat{p}_{n}}$ be the corresponding maximum likelihood estimator based on n independent observations each distributed according to the law ${\mathbb{P}}$ . With $\hat{\mathbb{P}}_{n}$ denoting the measure induced by the density ${\hat{p}_{n}}$ , define the stochastic process ${\hat{\nu}}_{n}: f\longmapsto \sqrt{n} \int fd({\hat{\mathbb{P}}}_{n} -\mathbb{P})$ where f ranges over some function class ${\mathcal{F}}$ . We give a general condition for Donsker classes ${\mathcal{F}}$ implying that the stochastic process $\hat{\nu}_{n}$ is asymptotically equivalent to the empirical process in the space ${\ell ^{\infty }(\mathcal{F})}$ of bounded functions on ${ \mathcal{F}}$ . This implies in particular that $\hat{\nu}_{n}$ converges in law in ${\ell ^{\infty }(\mathcal{F})}$ to a mean zero Gaussian process. We verify the general condition for a large family of Donsker classes ${\mathcal{ F}}$ . We give a number of applications: convergence of the probability measure ${\hat{\mathbb{P}}_{n}}$ to ${\mathbb{P}}$ at rate ${\sqrt{n}}$ in certain metrics metrizing the topology of weak(-star) convergence; a unified treatment of convergence rates of the MLE in a continuous scale of Sobolev-norms; ${\sqrt{n}}$ -efficient estimation of nonlinear functionals defined on ${\mathcal{P}}$ ; limit theorems at rate ${\sqrt{n}}$ for the maximum likelihood estimator of the convolution product ${\mathbb{P\ast P}}$ .  相似文献   

13.
Denote by ${\mathcal{C}\ell_{p,q}}$ the Clifford algebra on the real vector space ${\mathbb{R}^{p,q}}$ . This paper gives a unified tensor product expression of ${\mathcal{C}\ell_{p,q}}$ by using the center of ${\mathcal{C}\ell_{p,q}}$ . The main result states that for nonnegative integers p, q, ${\mathcal{C}\ell_{p,q} \simeq \otimes^{\kappa-\delta}\mathcal{C}_{1,1} \otimes Cen(\mathcal{C}\ell_{p,q}) \otimes^{\delta} \mathcal{C}\ell_{0,2},}$ where ${p + q \equiv \varepsilon}$ mod 2, ${\kappa = ((p + q) - \varepsilon)/2, p - |q - \varepsilon| \equiv i}$ mod 8 and ${\delta = \lfloor i / 4 \rfloor}$ .  相似文献   

14.
15.
Let ${(\Omega, \mathcal{F}, P)}$ be a probability space. For each ${\mathcal{G}\subset\mathcal{F}}$ , define ${\overline{\mathcal{G}}}$ as the σ-field generated by ${\mathcal{G}}$ and those sets ${F\in \mathcal{F}}$ satisfying ${P(F)\in\{0,1\}}$ . Conditions for P to be atomic on ${\cap_{i=1}^k\overline{\mathcal{A}_i}}$ , with ${\mathcal{A }_1,\ldots,\mathcal{A}_k\subset\mathcal{F}}$ sub-σ-fields, are given. Conditions for P to be 0-1-valued on ${\cap_{i=1}^k \overline{\mathcal{A}_i}}$ are given as well. These conditions are useful in various fields, including Gibbs sampling, iterated conditional expectations and the intersection property.  相似文献   

16.
In this paper, we give an example of a complete computable infinitary theory T with countable models ${\mathcal{M}}$ and ${\mathcal{N}}$ , where ${\mathcal{N}}$ is a proper computable infinitary extension of ${\mathcal{M}}$ and T has no uncountable model. In fact, ${\mathcal{M}}$ and ${\mathcal{N}}$ are (up to isomorphism) the only models of T. Moreover, for all computable ordinals α, the computable ${\Sigma_\alpha}$ part of T is hyperarithmetical. It follows from a theorem of Gregory (JSL 38:460–470, 1972; Not Am Math Soc 17:967–968, 1970) that if T is a Π 1 1 set of computable infinitary sentences and T has a pair of models ${\mathcal{M}}$ and ${\mathcal{N}}$ , where ${\mathcal{N}}$ is a proper computable infinitary extension of ${\mathcal{M}}$ , then T would have an uncountable model.  相似文献   

17.
Let pqd+1 be positive integers and let ${\mathcal{F}}$ be a finite family of convex sets in ${\mathbb{R}}^{d}$ . Assume that the elements of ${\mathcal{F}}$ are coloured with p colours. A p-element subset of ${\mathcal{F}}$ is heterochromatic if it contains exactly one element of each colour. The family ${\mathcal{F}}$ has the heterochromatic (p,q)-property if in every heterochromatic p-element subset there are at least q elements that have a point in common. We show that, under the heterochromatic (p,q)-condition, some colour class can be pierced by a finite set whose size we estimate from above in terms of d,p, and q. This is a colourful version of the famous (p,q)-theorem. (We prove a colourful variant of the fractional Helly theorem along the way.) A fractional version of the same problem is when the (p,q)-condition holds for all but an α fraction of the p-tuples in ${\mathcal{F}}$ . We show that, in the case that d=1, all but a β fraction of the elements of ${\mathcal{F}}$ can be pierced by p?q+1 points. Here β depends on α and p,q, and β→0 as α goes to zero.  相似文献   

18.
We denote by Conc A the ${(\vee, 0)}$ -semilattice of all finitely generated congruences of an algebra A. A lifting of a ${(\vee, 0)}$ -semilattice S is an algebra A such that ${S \cong {\rm Con}_{\rm c} A}$ . The assignment Conc can be extended to a functor. The notion of lifting is generalized to diagrams of ${(\vee, 0)}$ -semilattices. A gamp is a partial algebra endowed with a partial subalgebra together with a semilattice-valued distance; gamps form a category that lends itself to a universal algebraic-type study. The raison d’être of gamps is that any algebra can be approximated by its finite subgamps, even in case it is not locally finite. Let ${\mathcal{V}}$ and ${\mathcal{W}}$ be varieties of algebras (on finite, possibly distinct, similarity types). Let P be a finite lattice. We assume the existence of a combinatorial object, called an ${\aleph_0}$ -lifter of P, of infinite cardinality ${\lambda}$ . Let ${\vec{A}}$ be a P-indexed diagram of finite algebras in ${\mathcal{V}}$ . If ${{\rm Con}_{\rm c} \circ \vec{A}}$ has no partial lifting in the category of gamps of ${\mathcal{W}}$ , then there is an algebra ${A \in \mathcal{V}}$ of cardinality ${\lambda}$ such that Conc A is not isomorphic to Conc B for any ${B \in \mathcal{W}}$ . This makes it possible to generalize several known results. In particular, we prove the following theorem, without assuming that ${\mathcal{W}}$ is locally finite. Let ${\mathcal{V}}$ be locally finite and let ${\mathcal{W}}$ be congruence-proper (i.e., congruence lattices of infinite members of ${\mathcal{W}}$ are infinite). The following equivalence holds. Every countable ${(\vee, 0)}$ -semilattice with a lifting in ${\mathcal{V}}$ has a lifting in ${\mathcal{W}}$ if and only if every ${\omega}$ -indexed diagram of finite ${(\vee, 0)}$ -semilattices with a lifting in ${\mathcal{V}}$ has a lifting in ${\mathcal{W}}$ . Gamps are also applied to the study of congruence-preserving extensions. Let ${\mathcal{V}}$ be a non-semidistributive variety of lattices and let n ≥ 2 be an integer. There is a bounded lattice ${A \in \mathcal{V}}$ of cardinality ${\aleph_1}$ with no congruence n-permutable, congruence-preserving extension. The lattice A is constructed as a condensate of a square-indexed diagram of lattices.  相似文献   

19.
With each orthogeometry (P, ⊥) we associate ${{\mathbb {L}}(P, \bot)}$ , a complemented modular lattice with involution (CMIL), consisting of all subspaces X and X such that dim X < ?0, and we study its rôle in decompositions of (P, ⊥) as directed (resp., disjoint) union. We also establish a 1–1 correspondence between ?-varieties ${\mathcal {V}}$ of CMILs with ${\mathcal {V}}$ generated by its finite dimensional members and ‘quasivarieties’ ${\mathcal {G}}$ of orthogeometries: ${\mathcal {V}}$ consists of the CMILs representable within some geometry from ${\mathcal {G}}$ and ${\mathcal {G}}$ of the (P, ⊥) with ${{\mathbb {L}}(P, \bot) \in {\mathcal {V}}}$ . Here, ${\mathcal {V}}$ is recursively axiomatizable if and only if so is ${\mathcal {G}}$ . It follows that the equational theory of ${\mathcal {V}}$ is decidable provided that the equational theories of the ${\{{\mathbb {L}}(P, \bot)\, |\, (P, \bot) \in \mathcal {G}, {\rm{dim}} P = n\}}$ are uniformly decidable.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号