首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 625 毫秒
1.
采用水热合成法制备了α-MnO2、β-MnO2、γ-MnO2和δ-MnO2催化剂, 运用N2吸脱附实验、X射线衍射(XRD)、X射线光电子能谱(XPS)和H2程序升温还原(H2-TPR)等方法对催化剂进行了表征, 并将催化剂用于催化完全氧化乙醇反应中, 考察了不同晶型MnO2催化剂催化氧化乙醇活性的差异, 探讨了催化剂晶型结构与催化氧化活性的关联. 结果表明, 不同晶型的MnO2催化剂催化氧化乙醇活性差异显著, 活性顺序为α-MnO2>δ-MnO2>γ-MnO2>β-MnO2. 系列表征结果显示, 晶体结晶度和比表面积不是影响不同晶型MnO2催化剂活性的主要原因, α-MnO2催化剂具有的较高晶格氧浓度和较高的可还原性是其具有良好催化氧化乙醇活性的关键因素.  相似文献   

2.
以多孔钛膜为基膜,醋酸锰为锰源,采用溶胶凝胶法制备出负载纳米氧化锰的钛基电催化膜(nano-MnOx/Ti膜). 运用X射线衍射(XRD)、 X射线光电子能谱(XPS)、场发射扫描电子显微镜(FESEM)、循环伏安法(CV)、交流阻抗法(EIS)和计时电流法(CA)等测试手段,对MnOx/Ti膜电极的微观形貌、晶型、电化学性能等进行表征. 结果表明:所得催化剂是由直径为50 nm的γ-MnO2和Mn2O3纳米棒所组成,且均匀分布于Ti膜上,负载催化剂后钛膜电极电化学性能和催化性能明显提高,催化剂与基体之间键合的形成提高其稳定性. 以棒状nano-MnOx/Ti膜电极为阳极构建电催化膜反应器(ECMR)处理含酚废水,当苯酚溶液浓度为10mmol·L-1,电流密度为0.25mA·cm-2、停留时间为15 min时,COD去除率可达95.1%.  相似文献   

3.
本文采用液相法、热分解MnCO3法以及电解沉积法制备不同二氧化锰粉末,并将其与活性炭复合,应用于水系超级电容器. 使用X射线衍射(XRD)、扫描电子显微镜(SEM)技术对材料形貌进行表征. 使用循环伏安法以及恒流充放电法对其电化学性能进行测试. 实验数据表明,α-MnO2(质量分数70%)掺杂活性炭电极的最大比容量为151 F•g-1,β-MnO2(质量分数60%)掺杂活性炭电极的最大比容量为172F•g-1,γ-MnO2(质量分数50%)掺杂活性炭电极的最大比容量为141F•g-1,但二氧化锰粉末对电极内阻的影响呈无规律性.  相似文献   

4.
为了探究催化剂的结构和催化活性的关系,采用水热法制备了四种不同晶体结构的MnO2纳米催化剂(α-MnO2、β-MnO2、γ-MnO2和δ-MnO2),并考察了其低温NH3-SCR活性。结果表明,不同晶体结构催化剂的活性不同,依次为γ-MnO2 > α-MnO2 > β-MnO2 > δ-MnO2,γ-MnO2表现出最高的催化活性,NOx转化率在150-260℃超过90%。随后,通过X射线衍射(XRD)、扫描电子显微镜(SEM)、N2吸附-脱附、热重(TG)、红外光谱(FT-IR)、程序升温还原(H2-TPR)及吡啶吸附红外光谱(Py-FTIR)等表征手段对催化剂的结构和性质进行分析。结果表明,α-MnO2和β-MnO2为纳米棒,γ-MnO2和δ-MnO2为纳米针,催化剂的比表面积并不是影响低温NH3-SCR活性的主导因素。γ-MnO2具有适宜的孔道结构、较强的氧化还原能力、丰富的化学氧含量和Lewis酸酸性位点,是其具有最高低温NH3-SCR活性的原因。  相似文献   

5.
通过热还原法成功地制备出了柔性复合织物电极石墨烯/棉布(graphene/cotton)。热还原条件对电极的导电性能具有较大的影响。导电柔性织物电极graphene/cotton特有的多级结构使其既有利于进一步负载膺电容材料,又有利于电子和电解质离子的传输与扩散。通过电化学沉积方法,利用导电柔性织物电极graphene/cotton进一步制备出了电极MnO2/graphene/cotton。利用扫描电子显微镜(SEM),傅里叶变换红外(FTIR)光谱,四探针测试法等表征技术对电极的结构进行了较为详细的表征。结果表明电极MnO2/graphene/cotton的比电容可以达到536 F·g-1。良好的电化学性能和柔性使得此类电极在柔性储能材料应用中具有极大的应用前景。  相似文献   

6.
通过水热法制备了未掺杂α-MnO2和Al 掺杂α-MnO2, 对产物的形貌、结构和电化学性能进行了研究. 扫描电镜(SEM)和高分辨透射电镜(HRTEM)观察表明制备产物呈纳米管形态. 紫外-可见光谱分析计算了产物的能带间隙: 随着Al 的掺杂, α-MnO2的能带间隙值降低. 以未掺杂α-MnO2与Al 掺杂α-MnO2作为电极材料, 通过循环伏安(CV)和恒流充放电测试电极的超级电容器性能. 在50 mA·g-1电流密度下, 未掺杂α-MnO2与Al 掺杂α-MnO2电极的比电容分别达到了204.8 和228.8 F·g-1. 电化学阻抗谱(EIS)分析表明Al 的掺杂降低了α-MnO2在电解液中的阻抗, 有利于提高其电化学比电容. 增强的比电容及在1000个循环后仍具有良好的容量保持率,使Al 掺杂α-MnO2在超级电容器中具有较好的应用前景.  相似文献   

7.
用尽量简便的方法制备出δ、α、β及γ型4种MnO2粉末. 通过X射线衍射(XRD)、场发射扫描电镜(FSEM)、热重分析(TGA)与比表面积测试(BET)等方法对样品粉末性质进行分析,并对4种不同粉末制成的电极进行循环伏安、恒流充放电及稳定性测试. 结果表明,4种MnO2都具有良好的电容特性,其中α-MnO2具有最高的比表面积与孔隙率,故其电极比容量最高,但其大电流放电时的倍率特性较差. 其余3种MnO2比表面积相当,而β-MnO2虽然比容量较低,但其简单的孔隙结构使其拥有最好的倍率特性与稳定性.  相似文献   

8.
冯谙  范利军  蔡陶  李文坡 《应用化学》2015,32(9):1081-1087
采用计时电流法沉积纳米MnO2电极材料,利用Scharifker-Hills成核理论模型分析时间-电流(i-t)曲线判断了MnO2成核机理。 对3种不同的成核方式制得的MnO2材料进行电化学超级电容性能测试、用SEM观察了其微观形貌。 比较了不同沉积方法对沉积材料结构、电容性能的影响。 计时电流测试发现,在0.1 mol/L Mn2+溶液中,电势阶跃至0.365 V,初始成核符合瞬时成核机理,在0.01 mol/L Mn2+溶液中,电势阶跃至0.418 V,初始成核存在瞬时成核和连续成核两种不同机理,在0.5 mmol/L Mn2+溶液中,电势阶跃至0.515 V,初始成核则符合连续成核机理。 超级电容性能测试发现,瞬时成核下制得的MnO2电极材料相对于另外两种成核方式得到的电极材料具有更好的电容性能,这是因为瞬时成核更易于形成多孔、纳米片(棒)状等高比表面积的沉积物,表明制备方法影响MnO2电极材料电容性能。  相似文献   

9.
采用目标调控的阳极氧化工艺制备了超大比表面、管与管相互分离的有序TiO2纳米管阵列(TiO2 NTAs)基体,进而分别采用电化学氢化法和循环浸渍沉积法对晶化退火后的TiO2 NTAs实施电化学氢化和高比电容MnO2沉积的双重功能化改性,调控构筑了一种新型MnO2/H-TiO2纳米异质阵列电极材料。利用场发射扫描电子显微镜(FESEM)、高分辨透射电子显微镜(TRTEM)、X射线衍射仪(XRD)、X光电子能谱仪(XPS)、拉曼光谱(Raman)和电化学工作站等对样品进行综合表征与超电容特性测试,结果表明:电化学氢化改性有效提高了H-TiO2 NTAs的导电性和电化学特性,当电流密度为0.2 mA·cm-2时H-TiO2 NTAs的面积电容达到7.5 mF·cm-2,是相同电流密度下TiO2 NTAs的75倍;经过2个浸渍循环所获得的MnO2/H-TiO2 NTAs-2样品在电流密度为3 mA·mg-1时比电容可达481.26 F·g-1,电流密度为5 mA·mg-1时循环充放电1000圈后比电容仅下降约11%。  相似文献   

10.
采用水热法合成了不同比例Al3+离子掺杂的δ-MnO2纳米粉体.通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、 X射线光电子能谱(XPS)、循环伏安(CV)曲线、电化学阻抗谱(EIS)和恒电流充放电(GCD)曲线等手段对材料的结构和电化学性能进行了表征.结果表明, Al3+离子进入δ-MnO2的晶格替代部分Mn3+和Mn4+离子,使得δ-MnO2电极的性能明显提升.当反应物中Al3+/Mn2+摩尔比为0.45时,所得样品(A0.45M)的性能最好;其在1 A/g电流密度下的比电容为207.61 F/g,是纯相δ-MnO2(A0M)的2.4倍;其在10 A/g电流密度下循环10000次后的比电容为100.81 F/g,容量保持率为81.33%.  相似文献   

11.
以尿素、四水合氯化锰和氧化石墨烯为原料,采用水热法并通过热分解制备了一种具有石墨烯包覆结构的石墨烯-二氧化锰复合材料,利用扫描电子显微镜、X射线衍射、比表面积(BET)、拉曼光谱和热失重等技术对其形貌、晶体结构及表面结构进行了表征;在三电极条件下利用循环伏安法、恒流充放电法和交流阻抗法测试了材料的电化学性能,并考察了不同石墨烯含量对材料比电容的影响.结果表明,在不添加模板剂的条件下制备的复合材料中二氧化锰是具有介孔结构的α-MnO2,当复合15%(质量分数)的石墨烯后材料的比表面积从109 m2·g-1提高到168 m2·g-1.复合材料具有更好的电化学性能,在0.2 A·g-1电流密度下复合材料的比电容达到最大值(454 F·g-1),远高于纯二氧化锰的值(294 F·g-1).在2 A·g-1的电流密度下恒流充放电2000次后复合材料的比电容保持率为92%.  相似文献   

12.
通过电沉积的方法获得了一种具有均匀孔隙结构的海绵状二氧化锰催化剂,结合扫描电子显微镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)等手段表征了所制备材料的表面形貌、结构及元素构成和赋存价态,采用线性伏安扫描(LSV)法对电沉积材料的电化学性能进行分析,考察其催化氧还原反应的活性,最后以合成的材料为阴极催化剂,构建微生物燃料电池系统,考察其在微生物燃料电池中的应用效果。结果表明,以电沉积二氧化锰为阴极催化剂的微生物燃料电池最大功率密度为975.6 mW/m~2,是以商业二氧化锰为阴极催化剂的电池的1.7倍;这表明作为一种经济、高效、环境友好的阴极氧还原催化剂,电沉积法制备的二氧化锰为实现阴极催化剂的低成本制备以及微生物燃料电池放大化推进提供了新的研究途径。  相似文献   

13.
Co3O4/reduced graphene oxide composites were synthesized via a simple electrochemical method from graphene oxide and Co(NO3)2·6H2O as raw materials.Co3O4 nanoparticles with sizes of around 30-50 nm were distributed on the surface of graphene nanosheets confirmed by scanning electron microscopy and transmission electron microscopy.Electrochemical properties of Co3O4/graphene composite were tested by cyclic voltammetry,galvanostatic charge-discharge,and electrochemical impedance spectroscopy.The Co3O4/reduced graphene oxide composite was used as the pseudocapacitor electrode in the 2 mol/L NaOH aqueous electrolyte solution.The Co3O4/reduced graphene oxide composite electrode exhibited a specific capacitance of 357 F/g at a current density of 0.5 A/g in a three-electrode system.72% of capacitance was retained when the current density increased to 3 A/g.The Co3O4/reduced graphene oxide composite prepared electrodes show a high rate capability and excellent long-term stability.After 1000 cycles of charge and discharge,the capacitance is still maintained 87% at a current density of 1 A/g,indicating that the composite is a oromising alternative electrode material used for supercapacitors.  相似文献   

14.
中性/弱酸性水系锌锰电池因其能量密度高、价格低廉、环境友好等优势受到广泛关注。然而,现有的二氧化锰正极材料存在导电性能差,在充放电过程中易于溶解等问题。这严重影响了电池的倍率性能和循环稳定性,阻碍了中性锌锰电池的应用。为了解决上述问题,本文设计了以碳纳米管(CNT)网络薄膜为导电基底沉积聚吡咯(PPy)包覆二氧化锰(PPy@MnO2/CNT)的多级结构电极。碳纳米管和聚吡咯组装形成高比表面积的三维交联导电网络,为活性材料提供了快速的电子、离子传输通道;聚吡咯包覆纳米级二氧化锰能够有效地抑制二氧化锰的溶解,进而提升电池的倍率特性和循环稳定性。以PPy@MnO2/CNT作为正极材料组装的水系锌锰电池在1 A·g-1的电流密度下,比容量达到210 mAh·g-1,循环1000圈后,电池依然具有较高的容量保持率(85.7%)。本工作的导电聚合物包覆活性物质的策略可为发展高稳定柔性储能器件提供新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号