首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interfaces between phenylacetylene (PA) monolayers and two silicon surfaces, Si(111) and Si(100), are probed by X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and the results are analyzed using ab initio molecular orbital calculations. The monolayer systems are prepared via the surface hydrosilylation reaction between PA and hydrogen-terminated silicon surfaces. The following spectral features are obtained for both of the PA-Si(111) and PA-Si(100) systems: a broad π-π* shakeup peak at 292 eV (XPS), a broad first ionization peak at 3.8 eV (UPS), and a low-energy C 1s → π* resonance peak at 284.3 eV (NEXAFS). These findings are ascribed to a styrene-like π-conjugated molecular structure at the PA-Si interface by comparing the experimental data with theoretical analysis results. A conclusion is drawn that the vinyl group can keep its π-conjugation character on the hydrogen-terminated Si(100) [H:Si(100)] surface composed of the dihydride (SiH(2)) groups as well as on hydrogen-terminated Si(111) having the monohydride (SiH) group. The formation mechanism of the PA-Si(100) interface is investigated within cluster ab initio calculations, and the possible structure of the H:Si(100) surface is discussed based on available data.  相似文献   

2.
The covalent attachment of semicarbazide-functionalized layers to hydrogen-terminated Si(111) surfaces is reported. The surface modification, based on the photoinduced hydrosilylation of a Si(111) surface with protected semicarbazide-functionalized alkenes, was investigated by means of X-ray photoelectron spectroscopy (XPS), contact angle measurements, and atomic force microscopy (AFM). The removal of the protecting group yielded a semicarbazide-terminated monolayer which was reacted with peptides bearing a glyoxylyl group for site-specific alpha-oxo semicarbazone ligation.  相似文献   

3.
A combined experimental and theoretical study of a model system of multifunctional unsaturated ketones, including ethyl vinyl ketone (EVK), 2-cyclohexen-1-one, and 5-hexen-2-one, on the Si(100)-2 x 1 and Ge(100)-2 x 1 surfaces was performed in order to probe the factors controlling the competition and selectivity of organic reactions on clean semiconductor surfaces. Multiple internal reflection infrared spectroscopy data and density functional theory calculations indicate that EVK and 2-cyclohexen-1-one undergo selective [4 + 2] hetero-Diels-Alder and [4 + 2] trans cycloaddition reactions on the Ge(100)-2 x 1 surface at room temperature. In contrast, on the Si(100)-2 x 1 surface, evidence is seen for significant ene and possibly [2 + 2] C=O cycloaddition side products. The greater selectivity of these compounds on Ge(100) versus Si(100) is explained by differences between the two surfaces in both thermodynamic factors and kinetic factors. With 5-hexen-2-one, for which [4 + 2] cycloaddition is not possible, a small [2 + 2] C=C cycloaddition product is observed on Ge(100) and possibly Si(100), even though the [2 + 2] C=C transition state is calculated to be the highest barrier reaction by several kilocalories per mole. The results suggest that, due to the high reactivity of clean semiconductor surfaces, thermodynamic selectivity and control will play important roles in their selective functionalization, favoring the use of Ge for selective attachment of multifunctional organics.  相似文献   

4.
Three distinct wet chemistry recipes were applied to hydrogen-terminated n- and p-Si(100) surfaces in a comparative study of the covalent grafting of two differently substituted 2,2'-bipyridines. The applied reactions require the use of heat, or visible light under a controlled atmosphere, or a suitable potential in an electrochemical cell. In this last case, hydrogen-terminated silicon is the working electrode in a cathodic electrografting (CEG) reaction, in which it is kept under reduction conditions. The resulting Si--C bound hybrids were characterized by a combination of AFM, dynamic contact-angle, and XPS analysis, with the help of theoretical calculations. The three distinct approaches were found to be suitable for obtaining ligand-functionalized Si surfaces. CEG resulted in the most satisfactory anchoring procedure, because of its better correlation between high coverage and preservation of the Si surface from both oxidation and contamination. The corresponding Si-bipyridine hybrid was reacted in a solution of CH3CN containing CuI ions coordinatively bound to the anchored ligands, as evidenced from the XPS binding-energy shift of the N atom donor functions. The reaction gave a 1:2 Cu-bipyridine surface complex, in which two ligands couple to a single CuI ion. The surface complex was characterized by the Cu Auger parameter and Cu/N XPS atomic-ratio values coincident with those for pure, unsupported CuI complex with the same 2,2'-bipyridine. Further support for such a specific metal-ligand interaction at the functionalized Si surface came from the distinct values of Cu2p binding energy and the Cu Auger parameter, which were obtained for the species resulting from CuI ion uptake on hydrogen-terminated Si(100).  相似文献   

5.
Wet chemical cleaning of silicon is a critical step, e.g., pre-gate clean, in the semiconductor manufacturing[1]. For example, pre-gate oxide cleaning demands ultra-clean silicon surface with least surface roughness. It is well known that metallic infinities and roughness cause the lower breakdown voltage in gate dielectric[2]. It has stringent requirements for ultra-clean and atomically flat silicon surface as the thickness of gate oxide is decreasing. In the present work, we have extended our study on Si(100) surface13] and extensively investigated wet chemical cleaning of Si(111) and Si(100) surfaces in NH4F-based solutions by using scanning tunneling microscopy (STM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and total reflection X-ray fluorescence spectrometry (TXRF). Surface roughness, organic contamination, metallic impurities and surface termination on the silicon surfaces after wet chemical cleaning with various NH4F-based solutions have been determined and compared with those treated with RCA cleans, HF solutions and other industrially used solutions. Our results indicate that ultra-clean and smooth Si(111) and Si(001) surfaces are obtained by treatment with NH4F-based solutions.  相似文献   

6.
The covalent binding of acetylethyne on Si(100)-2 x 1 has been investigated using high-resolution electron energy loss spectroscopy (HREELS) and X-ray photoelectron spectroscopy (XPS). The HREELS spectra of chemisorbed monolayers show the absence of the C=O, C[triple bond]C, and C(sp)-H stretching modes coupled with the appearance of C=C (at 1580 cm(-1)) and C(sp2)-H (at 3067 cm(-1)) stretching modes. This demonstrates that both of the C=O and CC groups of acetylethyne directly participate in binding with silicon surfaces to form C-O and C=C bonds, respectively, which is further confirmed by the XPS studies. A tetra-sigma-binding configuration through two [2 + 2]-like cycloaddition reactions in acetylethyne binding on Si(100) is proposed to account for the experimental observation. The cycloadduct containing a C=C double bond may be employed as an intermediate for further in situ chemical syntheses of multilayer organic thin films or surface functionalization.  相似文献   

7.
The modification of flat semiconductor surfaces with nanoscale materials has been the subject of considerable interest. This paper provides detailed structural examinations of gold nanoparticles covalently immobilized onto hydrogen-terminated silicon surfaces by a convenient thermal hydrosilylation to form Si-C bonds. Gold nanoparticles stabilized by omega-alkene-1-thiols with different alkyl chain lengths (C3, C6, and C11), with average diameters of 2-3 nm and a narrow size distribution were used. The thermal hydrosilylation reactions of these nanoparticles with hydrogen-terminated Si(111) surfaces were carried out in toluene at various conditions under N2. The obtained modified surfaces were observed by high-resolution scanning electron microscopy (HR-SEM). The obtained images indicate considerable changes in morphology with reaction time, reaction temperature, as well as the length of the stabilizing omega-alkene-1-thiol molecules. These surfaces are stable and can be stored under ambient conditions for several weeks without measurable decomposition. It was also found that the aggregation of immobilized particles on a silicon surface occurred at high temperature (> 100 degrees C). Precise XPS measurements of modified surfaces were carried out by using a Au-S ligand-exchange technique. The spectrum clearly showed the existence of Si-C bonds. Cross-sectional HR-TEM images also directly indicate that the particles were covalently attached to the silicon surface through Si-C bonds.  相似文献   

8.
The surface chemistry of vinyltrimethylsilane (VTMS) on Si(100)-2x1 has been investigated using multiple internal reflection-Fourier transform infrared spectroscopy, Auger electron spectroscopy, and thermal desorption mass spectrometry. Molecular adsorption of VTMS at submonolayer coverages is dominating at cryogenic temperatures (100 K). Upon adsorption at room temperature, chemical reaction involving rehybridization of the double bond in VTMS occurs. Further annealing induces several reactions: molecular desorption from a monolayer by 400 K, formation and desorption of propylene by 500 K, decomposition leading to the release of silicon-containing products around 800 K, and, finally, surface decomposition leading to the production of silicon carbide and the release of hydrogen as H(2) at 800 K. This chemistry is markedly different from the previously reported behavior of VTMS on Si(111)-7x7 surfaces resulting in 100% conversion to silicon carbide. Thus, some information about the surface intermediates of the VTMS reaction with silicon surfaces can be deduced.  相似文献   

9.
This communication presents the first functionalization of a hydrogen-terminated silicon-rich silicon nitride (Si3Nx) surface with a well-defined, covalently attached organic monolayer. Properties of the resulting monolayers are monitored by measurement of the static water contact angle, X-ray photoelectron spectroscopy (XPS), and infrared reflection absorption spectroscopy (IRRAS). Further functionalization was performed by reaction of Si3Nx with a trifluoroethanol ester alkene (CH2=CH-(CH2)8CO2CH2CF3) followed by basic hydrolysis to afford the corresponding carboxylic acid-terminated monolayer with hydrophilic properties. These results show that Si3Nx can be functionalized with a tailor-made organic monolayer, has highly tunable wetting properties, and displays significant potential for further functionalization.  相似文献   

10.
We demonstrate a simple method for coupling alkynes to alkynes. The method involves tandem azide-alkyne cycloaddition reactions ("click" chemistry) for the immobilization of 1-alkyne species onto an alkyne modified surface in a one-pot procedure. In the case presented, these reactions take place on a nonoxidized Si(100) surface although the approach is general for linking alkynes to alkynes. The applicability of the method in the preparation of electrically well-behaved functionalized surfaces is demonstrated by coupling an alkyne-tagged ferrocene species onto alkyne-terminated Si(100) surfaces. The utility of the approach in biotechnology is shown by constructing a DNA sensing interface by derivatization of the acetylenyl surface with commercially available alkyne-tagged oligonucleotides. Cyclic voltametry, electrochemical impedance spectroscopy, X-ray photoelectron spectroscopy, and X-ray reflectometry are used to characterize the coupling reactions and performance of the final modified surfaces. These data show that this synthetic protocol gives chemically well-defined, electronically well-behaved, and robust (bio)functionalized monolayers on silicon semiconducting surfaces.  相似文献   

11.
A rapid route to the chemical functionalization of hydrogen-terminated diamond surfaces deposited by chemical vapor deposition involving their reaction with substituted diaryl carbenes has been investigated. To avoid difficulties in the handling of highly reactive compounds, the carbene is generated in situ from the thermal decomposition at 400 K of a thin film of the corresponding diaryl diazomethane precursor deposited at the diamond interface. X-ray photoelectron spectroscopy (XPS) has been used to verify that surface functionalization using two starting compounds, bis(4-iodophenyl) diazomethane and bis(4-nitrophenyl) diazomethane, can be achieved using this approach in agreement with recent theoretical studies. The surface grafting density is measured to be around 10(14) cm(-2) in each case. The chemistry observed is found to be insensitive to the detailed properties of the diamond film and to the presence of oxygen contamination at the hydrogen-terminated diamond surface. We further demonstrate the utility of the approach, in the case of the bound nitrophenyl compound, by its reduction to the corresponding primary amine followed by reaction with fluorescein isothiocyanate to achieve fluorescent tagging of the diamond interface.  相似文献   

12.
RCA (Radio Corporation of America) cleaning has been the important and critical step in semiconductor manufacturing for more than 30 years[1]. As the electronics devices are shrinking and gate oxide is getting thinner, stringent requirements on metallic impurities,organic contamination and surface roughness on silicon wafer after wet chemical cleaning have attracted more attention in the mechanism of wet etching processes on Si(111) and Si(100) surfaces[2=11]. In the past few years wet chemical and electrochemical etching of Si(110) in NH4F solutions has been studied by using scanning tunneling microscopy (STM)[12] and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR)[13-14]. In the present work, we extend our study to Si(110) surface in NH4F/HCl mixtures by using polarized attenuated total reflection FTIR (ATR-FTIR). We have compared the ex-situ ATR-FTIR results on Si(110) in various NH4F/HCl solutions using Ge prism. Effects of potential on hydrogen-terminated structures on Si(110) surfaces have been investigated by employing in-situ electrochemical ATR-FTIR with double side polished single crystal silicon as a prism. Our ATR-FTIR spectra are correlated with the results obtained with in-situ STM.  相似文献   

13.
Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) are used to compare the reaction of acrylonitrile with Si(001) and C(001) (diamond) surfaces. Our results show that reaction with Si(001) and C(001) yield very different product distributions that result from fundamental differences in the ionic character of these surfaces. While acrylonitrile reacts with the C(001) surface via a [2 + 2] cycloaddition reaction in a manner similar to nonpolar molecules such as alkenes and disilenes, reaction with the Si(001) surface occurs largely through the nitrile group. This work represents the first experimental example of how differences in dimer structure lead to very different chemistry for C(001) compared to that for Si(001). The fact that Si(001) reacts with the strongly polar nitrile group of acrylonitrile indicates that the zwitterionic character of this surface controls its reactivity. C(001) dimers, on the other hand, behave more like a true molecular double bond, albeit a highly strained one. Consequently, while alternative strategies will be necessary for chemical modification of Si(001), traditional schemes from organic chemistry for functionalization of alkenes and disilenes may be available for building molecular layers on C(001).  相似文献   

14.
For over a quarter of a century the hydrogen-terminated Si(111) single-crystalline surface has been the gold standard as a starting point for silicon surface modification chemistry. However, creating a well-defined and stable interface based on Si-N bonds has remained elusive. Despite the fact that azides, nitro compounds, and amines do lead to the formation of surface Si-N, each of these modification schemes produces additional carbon- or oxygen-containing functional groups that in turn react with the surface itself, leaving contaminants that affect the interface properties for any further modification protocols. We describe the preparation of a Si(111) surface functionalized predominantly with Si-NH-Si species based on chlorination followed by the room temperature ammonia treatment utilizing NH(3)-saturated tetrahydrofuran (THF). The obtained surface has been characterized by infrared spectroscopy and X-ray photoelectron spectroscopy. This analysis was supplemented with DFT calculations. This newly characterized surface will join the previously established H-Si(111) and Cl-Si(111) surfaces as a general starting point for the preparation of oxygen- and carbon-free interfaces, with numerous potential applications.  相似文献   

15.
It is important to understand the interface of aromatic molecules on semiconductor surfaces because of the rich functionality of such molecules on semiconductor surfaces. The chemisorption of pyrazine molecules on the Si( 100)-2×1 surface has been investigated using the B3LYP density functional theory with Si9H12 one-dimer and Si15H16 twodimer cluster models. The calculated results predict that N-dative bonded-state, C2= C5 [ 4 2 ] and the tightbridge1, 2, 5,6 products may coexist on the Si(100)-2×1 surface.  相似文献   

16.
The article reports on the wetting properties of silicon-based materials as a function of their roughness and chemical composition. The investigated surfaces consist of hydrogen-terminated and chemically modified atomically flat crystalline silicon, porous silicon and silicon nanowires. The hydrogenated surfaces are functionalized with 1-octadecene or undecylenic acid under thermal conditions. The changes occurring upon surface functionalization are characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) spectroscopy and water contact angle measurements. By increasing the surface roughness, the static water contact angle increases. The combination of high surface roughness with chemical functionalization with water repellent coating (1-octadecene) enables reaching superhydrophobicity (water contact angle greater than 150°) for silicon nanowires.  相似文献   

17.
Modification of hydrogen-terminated Si(1 1 1) surfaces by hydrosilylation of activated alkenes and further chemical transformation of the modified surfaces is reported. A Si(1 1 1)-H surface was reacted with activated alkenes such as acrylate esters, acrylonitrile, and maleic anhydride under mild conditions to give modified surfaces with terminal functional groups. A modified surface with a terminal ester group was reduced by LiAlH4 to give a hydroxy-terminated surface, and the hydroxy-terminated surface was transformed to a bromo-terminated surface. XPS analysis revealed that the brominated surface (Si(1 1 1)-CH2CH2CH2Br) had 32% coverage with the 3-bromopropyl group. Ester and amide formation reactions were carried out on hydroxy- and carboxy-terminated Si surfaces by reaction with tert-butoxycarbonyl glycine, glycine tert-butyl ester, 2,2,2-trifluoroethanol and 4-trifluoromethylbenzyl alcohol in the presence of carbodiimide. XPS characterization indicated that the esters and amide were successfully formed with coverage ranging from 16% to 58%. Coverage ratios of octadecyl ester modified surfaces were also estimated by combination of surface reduction and gas chromatography analysis to be 25-35%.  相似文献   

18.
The bonding of the trimethylamine (TMA) and dimethylamine (DMA) with crystalline silicon surfaces has been investigated using X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy, and density-functional computational methods. XPS spectra show that TMA forms stable dative-bonded adducts on both Si(001) and Si(111) surfaces that are characterized by very high N(1s) binding energies of 402.2 eV on Si(001) and 402.4 eV on Si(111). The highly ionic nature of these adducts is further evidenced by comparison with other charge-transfer complexes and through computational chemistry studies. The ability to form these highly ionic charge-transfer complexes between TMA and silicon surfaces stems from the ability to delocalize the donated electron density between different types of chemically distinct atoms within the surface unit cells. Corresponding studies of DMA on Si(001) show only dissociative adsorption via cleavage of the N-H bond. These results show that the unique geometric structures present on silicon surfaces permit silicon atoms to act as excellent electron acceptors.  相似文献   

19.
Crystalline Si(111) surfaces have been alkylated in a two-step chlorination/alkylation process using sterically bulky alkyl groups such as (CH3)2CH- (iso-propyl), (CH3)3C- (tert-butyl), and C6H5- (phenyl) moieties. X-ray photoelectron spectroscopic (XPS) data in the C 1s region of such surfaces exhibited a low energy emission at 283.9 binding eV, consistent with carbon bonded to Si. The C 1s XPS data indicated that the alkyls were present at lower coverages than methyl groups on CH(3)-terminated Si(111) surfaces. Despite the lower alkyl group coverage, no Cl was detected after alkylation. Functionalization with the bulky alkyl groups effectively inhibited the oxidation of Si(111) surfaces in air and produced low (<100 cm s(-1)) surface recombination velocities. Transmission infrared spectroscopy indicated that the surfaces were partially H-terminated after the functionalization reaction. Application of a reducing potential, -2.5 V vs Ag+/Ag, to Cl-terminated Si(111) electrodes in tetrahydrofuran resulted in the complete elimination of Cl, as measured by XPS. The data are consistent with a mechanism in which the reaction of alkyl Grignard reagents with the Cl-terminated Si(111) surfaces involves electron transfer from the Grignard reagent to the Si, loss of chloride to solution, and subsequent reaction between the resultant silicon radical and alkyl radical to form a silicon-carbon bond. Sites sterically hindered by neighboring alkyl groups abstract a H atom to produce Si-H bonds on the surface.  相似文献   

20.
The covalent binding of acrylonitrile (CH(2)=CH-C triple bond N) and the formation of a C=C-C=N structure on Si(100) have been investigated using high-resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and density functional theory (DFT) calculations. For chemisorbed acrylonitrile, the absence of nu(C triple bond N) at 2245 cm(-1) and the appearance of nu(C=N) at 1669 cm(-1) demonstrate that the cyano group directly participates in the interaction with Si(100), which is further supported by XPS and UPS observations. Our experimental results and DFT calculations unambiguously demonstrate a [2 + 2] cycloaddition mechanism for acrylonitrile chemisorption on Si(100) through the binding of C triple bond N to Si dimers. The resulting chemisorbed monolayer with a C=C-C=N skeleton can serve as a precursor for further chemical syntheses of multilayer organic thin films in a vacuum and surface functionalization for in situ device fabrication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号