首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The culture conditions for maximum secretion of laccase by Loweporus lividus MTCC-1178 have been optimized. The laccase from the culture filtrate of L. lividus MTCC-1178 has been purified to homogeneity. The molecular weight of the purified laccase is 64.8 kDa. The enzymatic characteristics like K m, pH, and temperature optimum using 2,6-dimethoxyphenol have been determined and found to be 480 μM, 5.0, and 60 °C, respectively. The K m values for other substrates like catechol, m-cresol, pyrogallol, and syringaldazine have also been determined and found to be 230, 210, 320, and 350 μM, respectively.  相似文献   

2.
A white rot basidiomycete Polyporus brumalis has been reported to induce two laccase genes under degradation conditions of dibutylphthalate. When this fungus was grown in a minimal medium, one laccase enzyme was detected by the native polyacrylamide gel electrophoresis. A laccase was purified through ammonium sulfate precipitation and ion exchange chromatography, and the estimated molecular weight was 70 kDa. The optimum pH and temperature of the purified laccase was pH 4.0 and 20 °C, respectively. The K m value of the enzyme was 685.0 μM, and the V max was 0.147 ODmin−1 unit−1 for o-tolidine. Purified laccase showed effective decolorization of a dye, Remazol Brilliant Blue R (RBBR), without any laccase mediator. However, this effect was reduced by a laccase inhibitor, kojic acid, which confirmed that the laccase was directly involved in the decolorization of RBBR.  相似文献   

3.
A laccase has been purified from the liquid culture growth medium containing bagasse particles of Fomes durissimus. The method involved concentration of the culture filtrate by ultrafiltration and anion exchange chromatography on diethyl aminoethyl cellulose. The sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE) and native polyacrylamide gel electrophoresis both gave single protein band indicating that the enzyme preparation was pure. The molecular mass of the purified laccase determined from SDS-PAGE analysis was 75 kDa. Using 2,6-dimethoxyphenol as the substrate, the determined K m and k cat values of the laccase are 182 μM and 0.35 s−1, respectively, giving a k cat/K m value of 1.92 × 103 M−1 s−1. The pH and temperature optimum were 4.0 and 35 °C, respectively. The purified laccase has yellow colour and does not show absorption band around 610 nm found in blue laccases. Moreover, it transformed methylbenzene to benzaldehyde in the absence of mediator molecules, property exhibited by yellow laccases.  相似文献   

4.
《Electroanalysis》2003,15(20):1577-1583
Laccase enzymes from two different sources, namely, tree laccase from Rhus vernicifera and fungal laccase from Coriolus hirsutus were used for the development of biosensor for catechol. Laccase was immobilized onto the amine terminated thiol monolayers on gold surface by glutaraldehyde coupling. From the different thiol monolayers investigated, cystamine was found to be optimal with respect to sensitivity, stability, reproducibility, and other electrochemical properties of the enzyme electrode. Linear calibration in the range between 1 and 400 μM for catechol was obtained for fungal laccase covalently coupled on the electrode surface. The kinetic parameters determined using the Lineweaver‐Burk and Eadie‐Hofstee plots were Km=0.65 mM and Vmax=24.5 μA for fungal laccase compared to Km=5.4 mM and Vmax=6.6 μA for tree laccase on cystamine monolayer. The electrode showed good stability for 1 month without loosing appreciable activity when stored dry in a refrigerator at ?20 °C.  相似文献   

5.
Laccase activity was detected in a soil bacterium Stenotrophomonas maltophilia AAP56 identified by biochemical and molecular methods. It was produced in cells at the stationary growth phase in Luria Bertani (LB) medium added by 0.4 mM copper sulfate. The addition of CuSO4 in culture medium improved production of laccase activity. However, one laccase enzyme was detected by native polyacrylamide gel electrophoresis. The enzyme showed syringaldazine (K m = 53 μM), 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (K m = 700 μM), and pyrocatechol (K m = 25 μM) oxidase activity and was activated by addition of 0.1% (v/v) Triton-X-100 in the reaction mixture. Moreover, the laccase activity was increased 2.6-fold by the addition of 10 mM copper sulfate; the enzyme was totally inhibited by ethylenediaminetetraacetic acid (5 mM), suggesting that this laccase is a metal-dependant one. Decolorization activity of some synthetic dyes (methylene blue, methyl green, toluidine blue, Congo red, methyl orange, and pink) and the industrial effluent (SITEX Black) was achieved by the bacteria S. maltophilia AAP56 in the LB growth medium under shaking conditions.  相似文献   

6.
Two laccase temperature isoforms capable of oxidizing phenolic compounds to quinones were isolated and purified to homogeneity from the cladodes of the xerophyte species Opuntia vulgaris. These catalytically active proteins exhibit apparent molecular masses of 137 and 90 kDa. Under reducing conditions, both isoforms yielded a subunit molecular mass of 43 kDa, suggesting that the enzyme is a multimer of the 43 kDa subunit. The 137 kDa isoform when heated at 80°C for 3min generated three polypeptide bands on activity stained polyacrylamide gels exhibiting 137, 90 and 43 kDa molecular forms. All isoforms of the enzyme exhibited an optimum pH of 10 when 2,6‐dimethoxyphenol was used as a substrate. The optimum temperature of the 137 kDa enzyme form was noted to be 80°C and that of the 90 kDa enzyme form was 70°C. Denaturation kinetics of both the laccase isoforms carried out at their respective optimum temperatures for 30 min exhibited enzyme activity in excess of their t1/2 values throughout the assay period. The Km for the 137 kDa form was determined to be 2.2 ± 0.3 mm and the Vmax was 2.8 ± 0.2 IU/mL. These high temperature stable laccase isoforms having alkaline pH optima can find significant industrial use. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
以表面固定Cu2+的改性大尺寸SiO2大孔材料作为载体,考察了时间、pH和给酶量对漆酶固定化效果的影响,并对固定化漆酶的活性和稳定性进行了研究。结果表明:5 h时吸附达到平衡,pH为4.5、漆酶与载体比例为5 mg·g-1时固定化效果最好,酶活回收率可达到100.4%;固定化漆酶的最适pH和最适温度较游离漆酶的均有升高且范围变宽,固定化后,漆酶的pH稳定性和热稳定性都得到显著提高;固定化漆酶的K m值略高于游离漆酶的;固定化漆酶具有良好的操作稳定性,与底物反应反复操作10批次后剩余酶活为72.7%。  相似文献   

8.
A fungal laccase (Myceliophthom thermophila) has been shown to function as an iodide oxidase. Unlike other halides which interact with the type 2 copper site and are inhibitors for the laccase, iodide interacts with the type 1 copper site and serves as a substrate capable of donating an electron to the laccase. Under anaerobic conditions, the interaction between the laccase and iodide results in the reduction of the laccase type 1 copper and the concomitant oxidation of iodide to form iodide. In aerated solutions, the laccase catalyzes the oxidation of iodide to iodine and the concomitant reduction of dioxygen to water. The reaction exhibits typical Michaelis kinetics with aK m of 0.16 ± 0.02M and ak cat of 2.7 ± 0.2 turnovers per min at the optimal pH (3.4). The catalysis can be enhanced by 2,2′-azino-bis-(3-ethylbenz-thiazoline-6-sulfonic acid), which shuttles electrons rapidly between iodide and the laccase. Bilirubin oxidase also demonstrates significant iodide oxidase activity, suggesting that the property could be a common feature for copper-containing oxidases. Possible industrial and medicinal applications for a laccase-based iodine production system are discussed.  相似文献   

9.
Ultraweak light emission was detected upon injection of firefly luciferin into live Tenebrio larvae. A chemilumi-nescent enzymatic activity dependent on molecular oxygen, D-luciferin and MgATP was then isolated from larval fat body extracts by precipitation with 70% ammonium sulfate. D-Luciferin and ATP can be replaced by luciferyl-adenylate. Pyrophosphate is a main product from the chemiluminescent reaction. The in vitro chemiluminescence intensity was not affected by peroxidase inhibitors such as N3?- (0.5 mM) and CN? (1 mM), attesting to its nonperoxidatic nature but was strongly inhibited by AMP (1 mM), luciferin 6′-ethyl ether (1 mM) and sodium pyrophosphate (2 mM), well-known firefly lucifer-ase inhibitors. Some physical-chemical properties of this enzymatic activity were similar to those of firefly lucif-erase (KMATP = 195 μM; K0.5 luciferin - 0.8 mM; optimum pH 8.5; δmax= 610 nm at pH 8.5; firefly lucifer-ase: δmax= 565 nm at pH 8.0 and 619 mm at pH 6.0), but the chemiluminescence was not affected by addition of polyclonal antibodies raised against Photinus pyralis luciferase. These data suggest that this chemiluminescence results from a ligase with luciferase activity.  相似文献   

10.
Thielavia terrestris is a soil-borne thermophilic fungus whose molecular/cellular biology is poorly understood. Only a few genes have been cloned from the Thielavia genus. We detected an extracellular glucoamylase in culture filtrates of T. terrestris and cloned the corresponding glaA gene. The coding region contains five introns. Based on the amino acid sequence, the glucoamylase was 65% identical to Neurospora crassa glucoamylase. Sequence comparisons suggested that the enzyme belongs to the glycosyl hydrolase family 15. The T. terrestris glaA gene was expressed in Aspergillus oryzae under the control of an A. oryzae α-amylase promoter and an Aspergillus niger glucoamylase terminator. The 75-kDa recombinant glucoamylase showed a specific activity of 2.8 μmol/(min·mg) with maltose as substrate. With maltotriose as a substrate, the enzyme had an optimum pH of 4.0 and an optimum temperature of 60°C. The enzyme was stable at 60°C for 30 min. The K m and k cat of the enzyme for maltotriose were determined at various pHs and temperatures. At 20°C and pH 4.0, the enzyme had a K m of 0.33±0.07 mM and a k cat of (5.5±0.5)×103 min−1 for maltotriose. The temperature dependence of k cat /K m indicated an activation free energy of 2.8 kJ/mol across the range of 20–70°C. Overall, the enzyme derived from the thermophilic fungus exhibited properties comparable with that of its homolog derived from mesophilic fungi.  相似文献   

11.
Four myrosinase (β-thioglucosidase EC. 3.2.3.1) and seven disaccharase (β-fructofuranosidase, EC. 3.2.1.26) isoenzymes were isolated from turnip leaves. The most active enzymes were isolated in pure form. Myrosinase and disaccharase mol wt was 62.0 × 103 and 69.5 × 103 dalton, respectively, on the basis of gel filtration on Sephadex G-200. Myrosinase pH profile showed high activity between pH 5 and 7 with the optimum at pH 5.5. The purified enzyme was heat-stable for 60 min at 30°C with only loss of 24% of activity. Its activity is strongly inhibited (100%) by Pb2+, Ba2+, Cu2+ and Ca2+ ions, and activated (70%) by EDTA at 0.04M. The pure enzyme failed to hydrolyze amylose, glycogen, lactose, maltose, and sucrose. TheK m andV max values of myrosinase using sinigrin as specific substrate was 0.045 mM and 2.5 U, respectively. The maximal activity of disaccharase enzyme was obtained at pH 4–5 and 35–37°C. The enzyme was heat-stable at 30°C for 30 min with only 10% loss of its activity. Its activity is strongly activated (70–240%) by Ca2+, Ba2+, Cu2+, and EDTA at 0.01M. The enzyme activity is specific to the disaccharide sucrose and failed to hydrolyze other disaccharides (maltose and lactose). TheK m andV max of disaccharase were 0.123 mM and 3.33 U, respectively.  相似文献   

12.
This work aimed to study the production of laccase from Pleurotus ostreatus DSM 1833 and Phoma sp. UHH 5-1-03 using banana peels as alternative carbon source, the subsequent partial purification and characterization of the enzyme, as well the applicability to degrade endocrine disruptors. The laccase stability with pH and temperature, the optimum pH, the K m and V max parameters, and the molar mass were determined. Tests were conducted for assessing the ability of degradation of the endocrine disruptors t-nonylphenol, bisphenol A, and 17??-ethinylestradiol. Laccase production of 752 and 1,117?U?L?1 was obtained for Phoma sp. and P. ostreatus, respectively. Phoma sp. laccase showed higher stability with temperature and pH. The laccase from both species showed higher affinity by syringaldazine. The culture broth with banana peels induced the production of two isoforms of P. ostreatus (58.7 and 21?kDa) and one of Phoma sp. laccase (72?kDa). In the first day of incubation, the concentrations of bisphenol A and 17??-ethinylestradiol were reduced to values close to zero and after 3?days the concentration of t-nonylphenol was reduced in 90% by the P. ostreatus laccase, but there was no reduction in its concentration by the Phoma sp. laccase.  相似文献   

13.
We have obtained pKa values of p-nitrophenol–TiO2 by measuring the adsorption equilibrium constants of p-nitrophenol (PNP) on the TiO2 surface at different pH values. These values have been obtained from Langmuir isotherms and from a plot of 1/rate vs. 1/[PNP]o obtained during TiO2 catalyzed solar light photo-degradation of PNP. Two limit equilibrium constants are readily obtained depending on the solution pH: at pH 5 at which the TiO2 surface is mainly positively charged and at pH 8 when it is negatively charged. With these and other adsorption equilibrium constants and the PNP pKa value in solution, thermodynamic cycles are established in order to obtain the PNP pKa when it is adsorbed on positively charged, neutral and negatively charged TiO2 surfaces. From these pKa values useful information on the PNP–TiO2 interaction is readily obtained. For instance, the PNP nitro group interacts with the TiO2 surface via a hydrogen bond, arising from the complex of water molecules with the Ti4+ ions on its surface. The weaker the hydrogen bond donor, the stronger the oxygen nitro group basicity. Therefore, pKa changes on the phenolic hydroxyl group result from these interactions. Linear free energy correlations, maximum PNP adsorption capacity values (QL) and FTIR ATR, spectrum support this proposal. A kobs vs. pH degradation profile of p-nitrophenol is also provided.  相似文献   

14.
Xylanase from Bacillus pumilus strain MK001 was immobilized on different matrices following varied immobilization methods. Entrapment using gelatin (GE) (40.0%), physical adsorption on chitin (CH) (35.0%), ionic binding with Q-sepharose (Q-S) (45.0%), and covalent binding with HP-20 beads (42.0%) showed the maximum xylanase immobilization efficiency. The optimum pH of immobilized xylanase shifted up to 1.0 unit (pH 7.0) as compared to free enzyme (pH 6.0). The immobilized xylanase exhibited higher pH stability (up to 28.0%) in the alkaline pH range (7.0–10.0) as compared to free enzyme. Optimum temperature of immobilized xylanase was observed to be 8 °C higher (68.0 °C) than free enzyme (60.0 °C). The free xylanase retained 50.0% activity, whereas xylanase immobilized on HP-20, Q-S, CH, and GE retained 68.0, 64.0, 58.0, and 57.0% residual activity, respectively, after 3 h of incubation at 80.0 °C. The immobilized xylanase registered marginal increase and decrease in K m and V max values, respectively, as compared to free enzyme. The immobilized xylanase retained up to 70.0% of its initial hydrolysis activity after seven enzyme reaction cycles. The immobilized xylanase was found to produce higher levels of high-quality xylo-oligosaccharides from birchwood xylan, indicating its potential in the nutraceutical industry.  相似文献   

15.
Although a previous study [S.S.M. Hassan, M.A. Ahmed, M.M. Saoudi, Anal. Chem. 57 (1985) 1126] had shown that a caffeine-sensitive electrode made with picrylsulfonate and 1-octanol as a cation-exchanger and a solvent mediator, respectively, had a wide working pH range (5.5–9.5) and exhibited a Nernstian response, we could not find such response in this electrode. The present result was reasonable, because the pKa value of caffeinium ion was reported to be around 0.7 and the neutral form of caffeine was predominant in the pH range examined. Thus, we reinvestigated the response characteristics of a caffeine electrode, taking into consideration the pKa value, and constructed a new electrode with a combination of the lipophilic cation-exchanger, tetrakis[3,5-bis(2-methoxyhexafluoro-2-propyl)phenyl]borate (HFPB), and the solvent mediator with high degree of dielectric constant, 2-fluoro-2′-nitrodiphenyl ether (FNDPE). This electrode showed a pH-dependent response to caffeinium ion and gave a detection limit of 50 μM with a slope of 55 mV per concentration decade at pH 2. The use of other solvent mediators was less effective than that of FNDPE. The electrode was applied for the determination of caffeine in some central stimulants.  相似文献   

16.
The formation constant (Kf) for the uranyl complex of 2,2′-dihydroxyazobenzene (DHAB) was measured with DHAB attached to poly(ethylenimine) (DHAB-PEI) at pH 7.7 to 9.4. The value of Kf was estimated from the equilibrium constant for extraction of uranyl ion from the uranyl complex of DHAB-PEI (UO2DHAB-PEI) with carbonate ion, which in turn was measured from the absorbance change observed on addition of bicarbonate ion to the solution of UO2DHAB-PEI. At pH 8.0, the uranyl-binding ability of DHAB was enhanced by about 104 times on attachment of DHAB to PEI. The major origin of the increased ability of uranyl ion complexation is the basic local microenvironment of PEI, which encourages ionization of the phenol groups of DHAB. Various other possible origins are discussed also. The log Kf for DHAB-PEI at pH 8.0 indicates that DHAB moieties of DHAB-PEI are mostly occupied, whereas DHAB unattached to PEI is mostly unoccupied by uranyl ion under conditions of seawater when only the pH and concentrations of bicarbonate and uranyl ions of seawater are considered. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3936–3942, 1999  相似文献   

17.
Colloidal indigo is reduced to an aqueous solution of leuco-indigo in a mediated two-electron process converting the water-insoluble dye into the water-soluble leuco form. The colloidal dye does not interact directly with the electrode surface, and to employ an electrochemical process for this reduction, the redox mediator 1,8-dihydroxyanthraquinone (1,8-DHAQ) is used to transfer electrons from the electrode to the dye. The mediated reduction process is investigated at a (500-kHz ultrasound-assisted) rotating disc electrode, and the quantitative analysis of voltammetric data is attempted employing the Digisim numerical simulation software package. At the most effective temperature, 353 K, the diffusion coefficient for 1,8-DHAQ is (0.84±0.08)×10−9 m2 s−1, and it is shown that an apparently kinetically controlled reaction between the reduced form of the mediator and the colloidal indigo occurs within the diffusion layer at the electrode surface. The apparent bimolecular rate constant k app=3 mol m−3 s−1 for the rate law \fracd[ \textleuco - \textindigo ] dt = k\textapp ×[ \textmediator ] ×[ \textindigo ]\frac{{d{\left[ {{\text{leuco}} - {\text{indigo}}} \right]}}} {{dt}} = k_{{{\text{app}}}} \times {\left[ {{\text{mediator}}} \right]} \times {\left[ {{\text{indigo}}} \right]} is determined and attributed to a mediator diffusion controlled dissolution of the colloid particles. The average particle size and the number of molecules per particles are estimated from the apparent bimolecular rate constant and confirmed by scanning electron microscopy.  相似文献   

18.
S1 nuclease fromAspergillus oryzae (EC 3.1.30.1) was coupled to gelatin-alginate composite matrix using the residual free aldehyde groups on the surface of glutaraldehyde crosslinked matrix. The immobilized enzyme retained approximately 10% activity of the soluble enzyme. When partially purified enzyme was bound to the matrix, the immobilized preparation did not show any detectable enzyme activity. However, the activity could be restored when the coupling was carried out in the presence of a coprotein or substrate. The optimum pH of the immobilized S1 nuclease shifted to 3.8 from 4.3 for the soluble enzyme. Also, optimum temperature increased to 65°C after immobilization. Bound S1 nuclease showed increased pH and temperature stabilities. Immobilization brought about a twofold decrease in the Michaelis-Menton constant (K m).  相似文献   

19.
A novel phytase gene, appA, was isolated by degenerate polymerase chain reaction (PCR) and thermal asymmetric interlaced PCR from Dickeya paradisiaca. The full-length appA comprises 1278 bp and encodes 425 amino acid residues, including a 23-residue putative N-terminal signal peptide. The deduced amino acid sequence of appA reveals the conserved motifs RHGXRXP and HD, which are typical of histidine acid phosphatases; significantly, APPA shows maximum identity (49%) to a phytase from Klebsiella pneumoniae. To characterize the properties of APPA, appA was expressed in Escherichia coli and purified. The purified recombinant APPA has two pH optima at pH 4.5 and 5.5, optimum temperature at 55 °C, specific activity of 769 U/mg, and good pH stability. The K m value for the substrate sodium phytate is 0.399 mM with a V max of 666 U/mg. To our knowledge, this is the first report of a phytase or phytase gene isolated from Dickeya. Weina Gu and Huoqing Huang contributed equally to this work.  相似文献   

20.
Laccase of Coriolus zonatus   总被引:1,自引:0,他引:1  
Laccase is one of the lignolytic enzymes found in liquid cultures of the fungus Coriolus zonatus in defined medium. The enzyme was isolated from culture liquid and characterized. Laccase from C. zonatus is a single-chain protein with a molecular mass of 60 kDa. Carbohydrate moiety of enzyme consisted of mannose, galactose and N-acetyl-glucosamine in a ratio of 6:2:0,6 respectively, and comprised 10% of the entiremolecule lsoelectric point was detected at pH 4.6. Laccase was found to have a pH optimum of 4.9 and temperature optimum of 55°C. Substrate specificity studies were conducted with catechol, K-ferrocyanide, hydroquinone, and sinapinic acid as substrates. The highest efficiency of catalysis was observed with sinapic acid as the substrate. The kinetic constants k cat and K28 of this reaction were 624 s−1 and 7 μM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号