首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
有中学化学参考资料题:0.10 mol/L的NH4Cl和(NH4)2SO4溶液哪个pH值高?这似乎是个中学生可做的简单题目,仔细考虑不是如此.如果简单地认为盐酸和硫酸都是强酸,而硫酸是二元酸,硫酸铵溶液中铵盐浓度为0.20 mol/L,那么NH4Cl溶液pH高,那是不妥的.硫酸是二元酸,第一个氢离子能完全电离,第二个氢离子部分电离,如此考虑情况怎么样呢?是不是答案发生变化?这要通过计算来说明.  相似文献   

2.
The conversion efficiencies reported for Tin(Sn)halide-based perovskite solar cells(PSCs)fall a large gap behind those of lead halide-based PSCs,mainly because of poor film quality of the former.Here we report an efficient strategy based on a simple secondary crystallization growth(SCG)technique to improve film quality for tin halide-based PSCs by applying a series of functional amine chlorides on the perovskite surface.They were discovered to enhance the film crystallinity and suppress the oxidation of Sn2+remarkably,hence reduce trap state density and non-irradiative recombination in the absorber films.Furthermore,the SCG film holds the band levels matching better with carrier transport layers and herein favoring charge extraction at the device interfaces.Consequently,a champion device efficiency of 8.07% was achieved alo ng with significant enhancements in VOC and JSC,in contrast to 5.35% of the control device value.Moreover,the SCG film-based devices also exhibit superior stability comparing with the control one.This work explicitly paves a novel and general strategy for developing high performance lead-free PSCs.  相似文献   

3.
Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO2 and Spiro-OMeTAD were employed as electron and hole transport layer(ETL/HTL)respectively.The inevitable interfacial recombination of charge carriers at ETL/perovskite and perovskite/HTL interface diminished the efficiency in planar(n-i-p)perovskite solar cells.By employing computational approach for uni-dimensional device simulator,the effect of band offset on charge recombination at both interfaces was investigated.We noted that it acquired cliff structure when the conduction band minimum of the ETL was lower than that of the perovskite,and thus maximized interfacial recombination.However,if the conduction band minimum of ETL is higher than perovskite,a spike structure is formed,which improve the performance of solar cell.An optimum value of conduction band offset allows to reach performance of 25.21%,with an open circuit voltage(VOC)of 1231 mV,a current density JSC of 24.57 mA/cm2 and a fill factor of 83.28%.Additionally,we found that beyond the optimum offset value,large spike structure could decrease the performance.With an optimized energy level of Spiro-OMeTAD and the thickness of mixed-perovskite layer performance of 26.56% can be attained.Our results demonstrate a detailed understanding about the energy level tuning between the charge selective layers and perovskite and how the improvement in PV performance can be achieved by adjusting the energy level offset.  相似文献   

4.
Carbon nanotubes(CNTs),as one-dimensional nanomaterials,show great potential in energy conversion and storage due to their efficient electrical conductivity and mass transfer.However,the security risks,time-consuming and high cost of the preparation process hinder its further application.Here,we develop that a negative pressure rather than a following gas environment can promote the generation of cobalt and nitrogen co-doped CNTs(Co/N-CNTs) by using cobalt zeolitic imidazolate framework(ZIF-67) as a precursor,in which the negative pressure plays a key role in adjusting the size of cobalt nanoparticles and stimulating the rearragement of carbon atoms for forming CNTs.Importantly,the obtained Co/N-CNTs,with high content of pyridinic nitrogen and abundant graphitized structure,exhibit superior catalytic activity for oxygen reduction reaction(ORR) with half-wave potential(E1/2) of 0.85 V and durability in terms of the minimum current loss(2%) after the 30,000 s test.Our development provides a new pathway for large-scale and cost-effective preparation of metal-doped CNTs for various applications.  相似文献   

5.
Bioimaging,as a powerful and helpful tool,which allows people to investigate deeply within living organisms,has contributed a lot for both clinical theranostics and scientific research.Pure organic room temperature phosphorescence(RTP)materials with the unique features of ultralong luminescence lifetime and large Stokes shift,can efficiently avoid biological autofluorescence and scattered light through a time-resolved imaging modality,and thus are attracting increasing attention.This review classifies pure organic RTP materials into three categories,including small molecule RTP materials,polymer RTP materials and supramolecular RTP materials,and summarizes the recent advances of pure organic RTP materials for bioimaging applications.  相似文献   

6.
夏金梅  林凤鸣  元英进 《化学进展》2007,19(7):1159-1163
纤维素生产乙醇的关键问题之一是水解产生的抑制性物质对乙醇发酵具有明显的抑制效应,因而引起了国内外研究者的广泛关注.研究发现,在抑制剂存在下,酵母在基因表达水平,蛋白水平和代谢物水平都有相应的耐受响应,且这些响应错综复杂.从系统角度运用组学的方法研究这一体系将有助于全面深入了解酵母的耐受机制.本文综述了系统研究的思路和方法在酵母对抑制剂耐受方面的研究状况;对主要研究手段和成果进行了回顾;并对酵母发酵乙醇系统分析的前景进行了展望.  相似文献   

7.
Most of the current analytical methods depend largely on laboratory-based analytical techniques that require expensive and bullky equipment,potentially incur costly testing,and involve lengthy detection processes.With increasing requirements for point-of-care testing(POCT),more attention has been paid to miniaturized analytical devices.Miniaturized electrochemical(MEC)sensors,including different material-based MEC sensors(such as DNA-,paper-,and screen electrode-based),have been in strong demand in analytical science due to their easy operation,portability,high sensitivity,as well as their short analysis time.They have been applied for the detection of trace amounts of target through measuring changes in electrochemical signal,such as current,voltage,potential,or impedance,due to the oxidation/reduction of chemical/biological molecules with the help of electrodes and electrochemical units.MEC sensors present great potential for the detection of targets including small organic molecules,metal ions,and biomolecules.In recent years,MEC sensors have been broadly applied to POCT in various fields,including health care,food safety,and environmental monitoring,owing to the excellent advantages of electrochemical(EC)technologies.This review summarized the state-of-the-art advancements on various types of MEC sensors and their applications in POCT.Furthermore,the future perspectives,opportunities,and challenges in this field are also discussed.  相似文献   

8.
The pressing demand for high-energy/power lithium-ion batteries requires the deployment of cathode materials with higher capacity and output voltage.Despite more than ten years of research,high-voltage cathode mate-rials,such as high-voltage layered oxides,spinel LiNi0.5Mn1.5O4,and high-voltage polyanionic compounds still cannot be commercially viable due to the instabilities of standard electrolytes,cathode materials,and cathode electrolyte interphases under high-voltage operation.This paper summarizes the recent advances in addressing the surface and interface issues haunting the application of high-voltage cathode materials.The understanding of the limitations and advantages of different modification protocols will direct the future endeavours on advancing high-energy/power lithium-ion batteries.  相似文献   

9.
Suppressing the trap-state density and the energy loss via ternary strategy was demonstrated.Favorable vertical phase distribution with donors(acceptors)accumulated(depleted)at the interface of active layer and charge extraction layer can be obtained by introducing appropriate amount of polymer acceptor N2200 into the systems of PBDB-T:IT-M and PBDB-TF:Y6.In addition,N2200 is gradiently distributed in the vertical direction in the ternary blend film.Various measurements were carried out to study the effects of N2200 on the binary systems.It was found that the optimized morphology especially in vertical direction can significantly decrease the trap state density of the binary blend films,which is beneficial for the charge transport and collection.All these features enable an obvious decrease in charge recombination in both PBDB-T:IT-M and PBDB-TF:Y6 based organic solar cells(OSCs),and power conversion efficiencies(PCEs)of 12.5%and 16.42%were obtained for the ternary OSCs,respectively.This work indicates that it is an effective method to suppress the trap state density and thus improve the device performance through ternary strategy.  相似文献   

10.
A generic coarse-grained bead-and-spring model,mapped onto comb-shaped polycarboxylate-based(PCE)superplasticizers,is developed and studied by Langevin molecular dynamics simulations with implicit solvent and explicit counterions.The agreement on the radius of gyration of the PCEs with experiments shows that our model can be useful in studying the equilibrium sizes of PCEs in solution.The effects of ionic strength,side-chain number,and side-chain length on the conformational behavior of PCEs in solution are explored.Single-chain equilibrium properties,including the radius of gyration,end-to-end distance and persistenee length of the polymer backbone,shape-asphericity parameter,and the mean span dimension,are determined.It is found that with the increase of ionic strength,the equilibrium sizes of the polymers decrease only slightly,and a linear dependenew of the persistence length of backbone on the Debye screening length is found,in good agreement with the theory developed by Dobrynin.Increasing side-chain numbers and/or side-chain lengths increases not only the equilibrium sizes(radius of gyration and mean span)of the polymer as a whole,but also the persistence length of the backbone due to excluded volume interactions.  相似文献   

11.
The molecular dynamics method has been applied to simulate the melting temperatures of CaF 2 at elevated temperature and high pressure and to calculate the P~V equation of state of CaF 2 up to 100 GPa at 300 K. The interatomic potential was taken to be the sum of pairwise additive Coulomb, van der Waals attractions, and repulsive interactions. In addition, the shell model was used in molecular dynamics simulation. The pressure dependence of the melting temperature of CaF 2 was predicted up to 4 GPa. However, in order to account for the superheating melting of the molecular dynamic simulation, the simulated melting temperatures of CaF 2 were corrected by the modern theory of melting. Consequently, the melting temperatures of CaF 2 were accurately obtained at elevated temperature and high pressure. Therefore, it is shown that shell model molecular dynamics simulation at constant pressure indeed provides a useful tool for studying the melting temperatures of other materials under high pressures.  相似文献   

12.
The equation of state of ZnO with rocksalt phase under high pressure and high temperature was calculated by using the molecular dynamics method with effective pair potentials which consist of the Coulomb, dispersion, and repulsion interaction. It was shown that molecular dynamics simulation is very successful in accurately reproducing the measured molar volumes of the rocksalt phase of ZnO over a wide range of temperatures and pressures. The simulated P-V -T data matched experimental results up to 10.4 GPa and 1273 K. In addition, the linear thermal expansion coe±cient, isothermal bulk modulus and its pressure derivative were also calculated and compared with available experimental data and the latest theoretical results at ambient condition. At extended temperature and pressure ranges, the P-V -T relationship, linear thermal expansion coe±cient, and isothermal bulk modulus were predicted up to 2273 K and 50 GPa. The detailed knowledge of thermodynamic behavior and equations of state at extreme conditions are of fundamental importance to the understanding of the physical properties of ZnO.  相似文献   

13.
The interaction potential plays an important role in molecular dynamics (MD) simulations. Pair potentialhas been used to simulate the melting temperature of MgSiO3 perovskite in previous studies, but considerablediscrepancy of melting temperature exists between these simulations. Comparisons of potential energy curvesare performed to explain the discrepancy. To further investigate the infuence of the interaction potentialparameters on the MD simulation result, a new set of potential parameters is developed based on two fitting potential parameters of previous studies, and is applied in the present study. The simulated molar volume MgSiO3 perovskite agrees well with the study by Belonoshko and Dubrovinsky at ambient condition. The equations of state, constant-pressure heating capacity and the constant-pressure thermal expansivity of MgSiO3 perovskite are close to the experimental data. Calculated melting temperatures are also comparable with those derived from previous studies.  相似文献   

14.
Nitrogen equation of state at pressures up to 30 GPa (300 kbars) and temperatures above 800 K was studied by molecular dynamics (MD) simulations. The dynamics of the N(2) molecules is treated in hard rotor approximation, i.e., it accounts both translational and rotational degrees of freedom. The rotational motion of the N(2) molecule is treated assuming constant moment of inertia of the nitrogen molecule. The new MD program fully accounts anisotropic molecular nitrogen interaction. The N(2)-N(2) interaction potential has been derived by van der Avoird et al. [J. Chem. Phys. 84, 1629 (1986)] using the results of high precision Hartree-Fock ab initio quantum mechanical calculations. The potential, fully accounts rotational symmetry of the N(2)-N(2) system, by employing 6-j Wigner symbols, i.e., preserving full rotational symmetry of the system. Various numerical algorithms were tested, in order to achieve the energy preservation during the simulation. It has been demonstrated that the standard Verlet algorithm was not preserving the energy for the standard MD time step, equal to 5x10(-16) s. Runge-Kutta fourth order method was able to preserve the energy within 10(-4) relative error, but it requires calculation of the force four times for each time step and therefore it is highly inefficient. A predictor-corrector method of the fifth order (PC5) was found to be efficient and precise and was therefore adopted for the simulation of the molecular nitrogen properties at high pressure. Singer and Fincham algorithms were tested and were found to be as precise as PC5 algorithm and they were also used in the simulation of the equation of state. Results of MD simulations are in very good agreement with the experimental data on nitrogen equation of state at pressures below 1 GPa (10 kbars). For higher pressures, up to 30 GPa (300 kbars), i.e., close to molecular nitrogen stability limit, determined by Nellis et al. [Phys. Rev. Lett. 85, 1262 (1984)], the obtained numerical results provide new data of the experimentally unexplored region. These data were formulated in the analytical form of pressure-density-temperature equation of state.  相似文献   

15.
The thermodynamic and elastic properties of magnesium silicate (MgSiO3) perovskite at high pressure are investigated with the quasi-harmonic Debye model and the first-principles method based on the density functional theory. The obtained equation of state is consis-tent with the available experimental data. The heat capacity and the thermal expansion coefficient agree with the observed values and other calculations at high pressures and tem-peratures. The elastic constants are calculated using the finite strain method. A complete elastic tensor of MgSiO3 perovskite is determined in the wide pressure range. The geo-logically important quantities: Young's modulus, Poisson's ratio, Debye temperature, and crystal anisotropy, are derived from the calculated data.  相似文献   

16.
Quantum mechanical (QM) high precision calculations were used to determine N(2)-N(2) intermolecular interaction potential. Using QM numerical data the anisotropic potential energy surface was obtained for all orientations of the pair of the nitrogen molecules in the rotation invariant form. The new N(2)-N(2) potential is in reasonably good agreement with the scaled potential obtained by van der Avoird et al. using the results of Hartree-Fock calculations [J. Chem. Phys. 84, 1629 (1986)]. The molecular dynamics (MD) of the N(2) molecules has been used to determine nitrogen equation of state. The classical motion of N(2) molecules was integrated in rigid rotor approximation, i.e., it accounted only translational and rotational degrees of freedom. Fincham [Mol. Simul. 11, 79 (1993)] algorithm was shown to be superior in terms of precision and energy stability to other algorithms, including Singer [Mol. Phys. 33, 1757 (1977)], fifth order predictor-corrector, or Runge-Kutta, and was therefore used in the MD modeling of the nitrogen pressure [S. Krukowski and P. Strak, J. Chem. Phys. 124, 134501 (2006)]. Nitrogen equation of state at pressures up to 30 GPa (300 kbars) and temperatures from the room temperature to 2000 K was obtained using MD simulation results. Results of MD simulations are in very good agreement (the error below 1%) with the experimental data on nitrogen equation of state at pressures below 1 GPa (10 kbars) for temperatures below 1800 K [R. T. Jacobsen et al., J. Phys. Chem. Ref. Data 15, 735 (1986)]. For higher temperatures, the deviation is slightly larger, about 2.5% which still is a very good agreement. The slightly larger difference may be attributed to the vibrational motion not accounted explicitly by rigid rotor approximation, which may be especially important at high temperatures. These results allow to obtain reliable equation of state of nitrogen for pressures up to 30 GPa (300 kbars), i.e., close to molecular nitrogen stability limit, determined by Nellis et al. [Phys. Rev. Lett. 53, 1661 (1984)].  相似文献   

17.
Using quantum-mechanical simulations based on density-functional perturbation theory, we address the problem of stability of MgSiO3 perovskite to decomposition into MgO and SiO2 at pressures and temperatures of the Earth's lower mantle. We show that MgSiO3 perovskite (and its post-perovskite phase) is more stable than the mixture of oxides throughout the pressure-temperature regime of the Earth's mantle. Structural stability and lattice dynamics of phases in the system MgO-SiO2 are discussed.  相似文献   

18.
利用壳层模型分子动力学方法,考虑萤石结构分子中的预熔化现象,对SrF2和BaF2的分子动力学模拟熔化温度进行修正,获得了高压下SrF2和BaF2的熔化温度.同时给出了300K、0.1MPa-7GPa和10.1MPa-3GPa时SrF2和BaF2的状态方程,与已有研究结果的最大误差分别为0.3%和2.2%.计算所得SrF2和BaF2常压下的熔点与已有的实验结果符合较好.对于SrF2和BaF2分子体积变化和已有的熔化模拟的差别也做了比较和讨论.  相似文献   

19.
In a theoretical study, benzene is compressed up to 300 GPa. The transformations found between molecular phases generally match the experimental findings in the moderate pressure regime (<20 GPa): phase I (Pbca) is found to be stable up to 4 GPa, while phase II (P4(3)2(1)2) is preferred in a narrow pressure range of 4-7 GPa. Phase III (P2(1)/c) is at lowest enthalpy at higher pressures. Above 50 GPa, phase V (P2(1) at 0 GPa; P2(1)/c at high pressure) comes into play, slightly more stable than phase III in the range of 50-80 GP, but unstable to rearrangement to a saturated, four-coordinate (at C), one-dimensional polymer. Actually, throughout the entire pressure range, crystals of graphane possess lower enthalpy than molecular benzene structures; a simple thermochemical argument is given for why this is so. In several of the benzene phases there nevertheless are substantial barriers to rearranging the molecules to a saturated polymer, especially at low temperatures. Even at room temperature these barriers should allow one to study the effect of pressure on the metastable molecular phases. Molecular phase III (P2(1)/c) is one such; it remains metastable to higher pressures up to ~200 GPa, at which point it too rearranges spontaneously to a saturated, tetracoordinate CH polymer. At 300 K the isomerization transition occurs at a lower pressure. Nevertheless, there may be a narrow region of pressure, between P = 180 and 200 GPa, where one could find a metallic, molecular benzene state. We explore several lower dimensional models for such a metallic benzene. We also probe the possible first steps in a localized, nucleated benzene polymerization by studying the dimerization of benzene molecules. Several new (C(6)H(6))(2) dimers are predicted.  相似文献   

20.
The phase diagram and polymorphism of oxygen at high pressures and temperatures are of great interest to condensed matter and earth science. X-ray diffraction and Raman spectroscopy of oxygen using laser and resistively heated diamond anvil cells reveal that the molecular high-pressure phase ε-O(2), which consists of (O(2))(4) clusters, reversibly transforms in the pressure range of 44 to 90 GPa and temperatures near 1000 K to a new phase with higher symmetry. The data suggest that this new phase (η') is isostructural to a phase η reported previously at lower pressures and temperatures, but differs from it in the P-T range of stability and type of intermolecular association. The melting curve increases monotonically up to the maximum pressures studied (~60 GPa). The structure factor of the fluid measured as a function of pressure to 58 GPa shows continuous changes toward molecular dissociation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号