首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 420 毫秒
1.
We report a femtosecond optical parametric oscillator (OPO) based on the nonlinear material BiB3O6. The OPO is synchronously pumped in the blue by the second harmonic of a Kerr-lens-mode-locked Ti:sapphire laser. It can provide wide and continuous tuning across the entire green-yellow-orange-red spectral range with a single crystal and a single set of mirrors. Using a 500 microm BiB3O6 crystal and collinear type I (e+e->o) phase matching in the optical yz plane, a signal wavelength range of 480-710 nm is demonstrated with angle tuning at room temperature at average output powers of 270 mW. With 220 fs blue pump pulses, near-transform-limited signal pulses of 120 fs duration have been obtained at 76 MHz repetition rate.  相似文献   

2.
We demonstrated experimentally a synchronously pumped intracavity frequency-doubled femtosecond optical parametric oscillator (OPO) using a periodically-poled lithium niobate (PPLN) as the nonlinear material in combination with a lithium triborate (LBO) as the doubling crystal. A Kerr-lens-mode-locked (KLM) Ti:sapphire oscillator at the wavelength of 790 nm was used as the pump source, which was capable of generating pulses with a duration as short as 117 fs. A tunable femtosecond laser covering the 624-672 nm range was realized by conveniently adjusting the OPO cavity length. A maximum average output power of 260 mW in the visible range was obtained at the pump power of 2.2 W, with a typical pulse duration of 205 fs assuming a sech2 pulse profile.  相似文献   

3.
We report a femtosecond optical parametric oscillator (OPO) based on the nonlinear material BiB?O? (BIBO) pumped directly by a Kerr lens mode-locked Ti:sapphire laser. Using a 1.5 mm long BIBO crystal cut at θ=11.4° for collinear type I (e→o+o) phase matching in the xz optical plane, femtosecond signal pulses across 1.4-1.6 μm, and idler pulses across 1.6-1.87 μm spectral range are generated, limited by the reflectivity bandwidth of the OPO mirrors. The high nonlinear gain and large spectral acceptance for type I interaction in the xz plane of BIBO permit rapid and continuous tuning across the entire range by simple fine adjustment of OPO cavity delay or through small changes in the pump wavelength, without varying any other parameters. Additionally, owing to the near-zero group velocity mismatch and dispersion, the OPO supports broad spectrum as wide as 33 nm, which results in self-compressed signal pulses. For 150 fs pump pulses, signal pulses with durations down to 106 fs with a time-bandwidth product of 0.48 are obtained without the need for intracavity dispersion compensation.  相似文献   

4.
Efficient generation of tunable femtosecond pulses in the blue is reported in the nonlinear crystal BiB3O6. By use of fundamental pulses from a mode-locked Ti:sapphire laser at 76 MHz, single-pass second-harmonic average powers of as much as 830 mW have been generated at 50% conversion efficiency, and a tunable range of 375-435 nm in the blue is demonstrated. Temporal measurements using cross correlation of the fundamental and second-harmonic pulses in a 100-microm-thick beta-BaB2O4 crystal result in blue pulse durations of 220 fs for 130-fs fundamental pulses. Direct experimental comparison with beta-BaB2O4 confirms the superior performance BiB3O6 for second-harmonic generation of femtosecond pulses.  相似文献   

5.
Min CK  Joo T 《Optics letters》2005,30(14):1855-1857
We demonstrate a high-energy near-infrared cavity-dumped femtosecond optical parametric oscillator (OPO) based on periodically poled lithium niobate. The laser generates 90 nJ pulses at a repetition rate of up to 1 MHz when synchronously pumped by 800 mW output from a femtosecond Ti:sapphire laser. The laser is broadly tunable from 1.0 to 1.5 microm in the signal branch, with a pulse duration of < 60 fs at 1.2 microm. High intracavity power is achieved by running the laser in the regime of positive group-velocity dispersion.  相似文献   

6.
We experimentally demonstrated a diode-pumped Kerr-lens mode-locked femtosecond(fs) laser with a self-frequency doubling Yb:YCa_4O(BO_3)_3 crystal.Sub-40 fs laser pulses were directly generated from the oscillator without extracavity compression.The central wavelength was tunable from 1039 nm to 1049 nm with a typical bandwidth of 35 nm and an average output power of 53 mW.For the first time,a self-frequency doubled second harmonic green laser with tunable range from 519 nm to 525 nm was observed.  相似文献   

7.
Efficient generation of femtosecond pulses in the wavelength range from 520 to 675 nm by external frequency doubling the signal wave of a non-critically phase-matched picosecond KTP Optical Parametric Oscillator (OPO) in a non-critically phase-matched temperature tuned LiB3O5(LBO) crystal is demonstrated. An average power of the second harmonic as high as 310 mW at 575 nm was generated. In the absence of group velocity mismatch of LBO for a wavelength of the OPO at about 1.3 µm the minimum second-harmonic pulse width was 400 fs at 645 nm.  相似文献   

8.
A few‐cycle, broadband, singly‐resonant optical parametric oscillator (OPO) for the mid‐infrared based on MgO‐doped periodically‐poled LiNbO3 (MgO:PPLN), synchronously pumped by a 20‐fs Ti:sapphire laser is reported. By using crystal interaction lengths as short as 250 µm, and careful dispersion management of input pump pulses and the OPO resonator, near‐transform‐limited, few‐cycle idler pulses tunable across the mid‐infrared have been generated, with as few as 3.7 optical cycles at 2682 nm. The OPO can be continuously tuned over 2179‐3732 nm (4589‐2680 cm‐1) by cavity delay tuning, providing up to 33 mW of output power at 3723 nm. The idler spectra exhibit stable broadband profiles with bandwidths spanning over 422 nm (FWHM) recorded at 3732 nm. The effect of crystal length on spectral bandwidth and pulse duration is investigated at a fixed wavelength, confirming near‐transform‐limited idler pulses for all grating interaction lengths. By locking the repetition frequency of the pump laser to a radio‐frequency reference, and without active stabilization of the OPO cavity length, an idler power stability better than 1.6% rms over >2.75 hours is obtained when operating at maximum output power, in excellent spatial beam quality with TEM00 mode profile. Photograph shows a multigrating MgO:PPLN crystal used as a nonlinear gain medium in the few‐cycle femtosecond mid‐IR OPO. The visible light is the result of non‐phase‐matched sum‐frequency mixing between the interacting beams.  相似文献   

9.
田文龙  王兆华  朱江峰  魏志义 《中国物理 B》2016,25(1):14207-014207
We demonstrate a widely tunable near-infrared source from 767 nm to 874 nm generated by the intracavity second harmonic generation(SHG) in an optical parametric oscillator pumped by a Yb:LYSO solid-state laser. The home-made Yb:LYSO oscillator centered at 1035 nm delivers an average power of 2 W and a pulse duration as short as 351 fs. Two Mg O doped periodically poled lithium niobates(Mg O:PPLN) with grating periods of 28.5–31.5 μm in steps of 0.5 μm and19.5–21.3 μm in steps of 0.2 μm are used for the OPO and intracavity SHG, respectively. The maximum average output power of 180 m W at 798 nm was obtained and the output pulses have pulse duration of 313 fs at 792 nm if a sech2-pulse shape was assumed. In addition, tunable signal femtosecond pulses from 1428 nm to 1763 nm are also realized with the maximum average power of 355 m W at 1628 nm.  相似文献   

10.
超宽带近红外和蓝光飞秒激光脉冲产生的实验研究   总被引:3,自引:3,他引:0  
杨建军 《光子学报》2006,35(11):1617-1622
增益介质中泵浦光束提供的软光阑效应对于实现克尔透镜稳定锁模及其超宽带光谱脉冲的产生具有非常重要的作用.实验上首先对半导体泵浦全固化钛宝石飞秒激光器的锁模动态特性进行了研究,在4 W绿光泵浦状态下获得了平均输出功率为570 mW、中心波长在794 nm~835 nm范围内调谐、光谱带宽最大可达135 nm的近红外光脉冲输出,其相应的时域变换极限脉冲宽度均小于10 fs.另外,将光束聚焦在超薄BBO晶体上,获得了中心波长在418 nm~429 nm之间调谐、光谱宽带时域变换极限小于15 fs的蓝光飞秒脉冲.  相似文献   

11.
Wong KS  Qui ZR  Wang H  Wong GK 《Optics letters》1997,22(12):898-900
Using pulses with tilted pulse fronts to compensate for the group-velocity mismatch in three-wave interactions, we constructed an efficient 400-nm pumped femtosecond collinear typeI phase-matched beta -barium borate optical parametric generator and amplifier. The signal and idler outputs are tunable from 470nm to 2.7 microm and have pulse widths in the range of 100170fs at a 1-kHz repetition rate. A maximum output energy of 6.5 microJ and a total conversion efficiency of more than 15% were achieved.  相似文献   

12.
First-order quasi-phase-matched frequency doubling at 780 nm in a 1-mm-thick periodically poled KTiOPO(4) crystal with an inverted-domain period of 2.95 microm has been demonstrated for the first time to the authors' knowledge. A normalized conversion efficiency of 1.1%W(-1) cm(-1) has been obtained in cw mode. Experiments show that group-velocity walk-off prevents efficient frequency doubling of femtosecond pulses in KTiOPO(4) in the UV spectral range. However, because of the large optical nonlinearity, periodically poled structures can be efficiently used for frequency doubling of cw and pulsed lasers with pulse lengths as short as ~1 ps .  相似文献   

13.
We present detailed investigations of a femtosecond green-pumped optical parametric oscillator (OPO) based on lithium triborate. As pump source, a frequency-doubled Yb-fiber laser-amplifier system is used. The OPO generates signal pulses tunable over a spectral range from 780 to 940 nm and idler pulses tunable from 1630 to 1190 nm. More than 250 mW are generated in the signal beam and more than 300 mW in the idler beam. Without dispersion compensation chirped signal pulses with a pulse duration between 100 and 250 fs are measured. Using this system for coherent anti-Stokes Raman scattering spectroscopy, vibrational resonances between 1110 and 6760 cm−1 can be excited. Due to the chirped pulses, a spectral resolution of 100 cm−1 is achieved, which is 2.5 times higher compared to an excitation with time-bandwidth limited pulses.  相似文献   

14.
An over 300 nm tunable broadband noncollinear optical parametric amplification in visible scale as well as the generation of blue pump pulses in one BBO crystal are demonstrated. Micro-joule energies are achieved in the signal branch, and the signal central wavelength can be tuned from 475 to 800 nm. The near-transform-limited sub-50 fs pulse duration is attainable over the whole tuning range after compression by a pair of prisms.  相似文献   

15.
We report on the reduction of the divergence and the spectral width of the output of a 355 nm pumped pulsed optical parametric oscillator (OPO) of β-barium borate (BBO). Detailed theoretical investigations indicated that type-IIphase matching in combination with double-passing the pump beam should simultaneously reduce the spectral width and the divergence of the OPO output beam. These predictions are confirmed in the experiments reported in this paper. In fact the bandwidth is reduced by more than a factor of 20 to less than 0.1 nm. Simultaneously the divergence of the OPO waves is reduced in the phase matching plane by more than a factor of 5 to 1.0 mrad. The small divergence and the reduced bandwidth allows efficient frequency doubling of the 5-ns-long visible OPO signal pulses into the UV. Doubling in a 7-mm-long BBO crystal provided conversion efficiencies of up to 35%. Received: 21 August 2000 / Revised version: 11 December 2000 / Published online: 21 March 2001  相似文献   

16.
Frequency doubling the output of a high-power femtosecond Cr:forsterite regenerative amplifier with >50% conversion efficiency in a temperature-tuned noncritically phase-matched LBO crystal produces femtosecond pulses of >100 μJ energy in the visible range near 625 nm at a pulse duration of about 200 fs or >65 μJ at <170 fs. Received: 29 March 1999 / Revised version: 27 April 1999 / Published online: 24 June 1999  相似文献   

17.
We report single-pass difference-frequency generation of mid-infrared femtosecond pulses tunable in the 3.2-4.8 microm range from a two-branch mode-locked erbium-doped fiber source. Average power levels of up to 1.1 mW at a repetition rate of 82 MHz are obtained in the mid infrared. This is achieved via nonlinear mixing of 170 mW, 65 fs pump pulses at a fixed wavelength of 1.58 microm, with 11.5 mW, 40 fs pulses tunable in the near-infrared range between 1.05 and 1.18 microm. These values indicate that the tunable near-infrared input component is downconverted with a quantum efficiency that exceeds 30%.  相似文献   

18.
Efficient single-pass second-harmonic generation (SHG) of tunable high-repetition-rate picosecond pulses into the blue is reported in the nonlinear crystal BiB3O6. Using 2.4 ps fundamental pulses from a mode-locked Ti:sapphire laser at 76 MHz and a 10 mm crystal cut for type I (e + e --> o) phase matching in the optical yz plane, second-harmonic average powers as high as 990 mW with excellent stability have been generated at 52% conversion efficiency, and a tunable range of 370-450 nm is demonstrated. From measurements of single-pass SHG in the continuous-wave regime an effective nonlinear coefficient of 3.7 pm/V has been verified for BiB3O6, and direct comparison with beta-BaB2O4 confirms a SHG power enhancement of approximately 23% for the same crystal length. Autocorrelation measurements in a 200 microm crystal of beta-BaB2O4 result in durations of 2.8 ps for the second-harmonic blue pulses.  相似文献   

19.
We demonstrate a harmonically pumped femtosecond optical parametric oscillator(OPO)laser using a frequency-doubled mode-locked Yb:KGW laser at a repetition rate of 75.5 MHz as the pump laser.Based on a bismuth borate nonlinear crystal,repetition rates up to 1.13 GHz are realized,which is 15 times that of the pump laser.The signal wavelength is tunable from 700 nm to 887 nm.The maximum power of the signal is 207 m W at the central wavelength of 750 nm and the shortest pulse duration is 117 fs at 780 nm.The beam quality(M^2 factor)in the horizontal and vertical directions of the output beam are 1.077 and 1.141,respectively.  相似文献   

20.
Burr KC  Tang CL  Arbore MA  Fejer MM 《Optics letters》1997,22(19):1458-1460
We describe a high-repetition-rate femtosecond optical parametric oscillator (OPO) that was broadly tunable in the mid infrared. The all-solid-state-pumped OPO was based on quasi-phase matching in periodically poled lithium niobate. The idler was tunable from approximately 1.7 mum to beyond 5.4 mum, with maximum average power levels greater than 200 mW and more than 20 mW of average power at 5.4 mum. We used interferometric autocorrelation to characterize the mid-infrared idler pulses, which typically had durations of 125 fs. This OPO had a pumping threshold as low as 65 mW of average pump power, a maximum conversion efficiency of >35% into the near-infrared signal, a slope efficiency for the signal of approximately 60%, and a maximum pump depletion of more than 85%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号