首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
The acoustic-reflex thresholds (ART) for multicomponent tonal complexes of varying bandwidth and spectral density were obtained from 20 normal-hearing (air-conduction thresholds less than or equal to 20 dB HL at 250-8000 Hz) young adults ranging in age from 20-30 years and 20 normal-hearing, old subjects ranging in age from 60-71 years. The results revealed that the ART decreased with spectral density, plateauing after seven components in the young group and after five components in the old group; the decrease in the acoustic-reflex threshold as a result of the increase in spectral density was less in the old than in the young group. The bandwidth effect (when bandwidth was plotted in hertz or octaves) on the acoustic-reflex threshold was present in the young adults, but substantially reduced in the elderly, as evidenced by the statistically significant interaction between subject group and signal bandwidth. The spectral density results are discussed in terms of their theoretic implications for the energy summation capacity and frequency resolution of the auditory system. The bandwidth results are discussed in terms of their theoretic implications for the frequency-resolving power of the auditory system.  相似文献   

2.
Two experiments investigated the temporal integration of trains of tone pulses by normal and by cochlearly impaired listeners. In the first experiment, thresholds were measured for a single 5-ms, 4-kHz tone pulse, and for ten such tone pulses as a function of interpulse interval (delta t). For normal listeners, temporal integration, defined as the threshold difference between one and ten pulses, was about 8 dB for delta t less than 20 ms, and about 5 dB at longer delta t's. For impaired listeners, temporal integration was only about 2-3 dB across the range of delta t's (5-160 ms) studied. A second experiment measured psychometric functions (log d' versus log signal power) for a single pulse and for ten pulses with delta t's of 5 ms and 80 ms. The normal listeners' functions had slopes close to unity in all three conditions, with a few exceptions. The impaired listeners' functions had slopes close to unity for ten pulses with delta t = 5 ms, but had slopes significantly greater than unity for delta t = 80 ms, and for a single pulse. At delta t = 80 ms, the increase in d' relative to the condition with a single tone was similar (a factor of square root of 10) for both impaired and normal listeners, but the threshold difference was smaller for the impaired listeners due to their steeper psychometric functions. For impaired listeners, then, temporal integration at delta t = 80 ms was normal in terms of a change in d' but abnormal when measured as a threshold difference.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The purpose of this study was to determine the role of static, dynamic, and integrated cues for perception in three adult age groups, and to determine whether age has an effect on both consonant and vowel perception, as predicted by the "age-related deficit hypothesis." Eight adult subjects in each of the age ranges of young (ages 20-26), middle aged (ages 52-59), and old (ages 70-76) listened to synthesized syllables composed of combinations of [b d g] and [i u a]. The synthesis parameters included manipulations of the following stimulus variables: formant transition (moving or straight), noise burst (present or absent), and voicing duration (10, 30, or 46 ms). Vowel perception was high across all conditions and there were no significant differences among age groups. Consonant identification showed a definite effect of age. Young and middle-aged adults were significantly better than older adults at identifying consonants from secondary cues only. Older adults relied on the integration of static and dynamic cues to a greater extent than younger and middle-aged listeners for identification of place of articulation of stop consonants. Duration facilitated correct stop-consonant identification in the young and middle-aged groups for the no-burst conditions, but not in the old group. These findings for the duration of stop-consonant transitions indicate reductions in processing speed with age. In general, the results did not support the age-related deficit hypothesis for adult identification of vowels and consonants from dynamic spectral cues.  相似文献   

4.
To investigate the effect of exposure duration on stereopsis and its spatial frequency dependency, we measured disparity threshold for the depth discrimination varying stimulus exposure duration between 0.05 and 2 s for three spatial frequencies (0.23, 0.94 and 3.75 c/deg). The results showed that disparity threshold decreased with increase in exposure duration up to a certain duration, beyond which it was approximately constant (the duration is called critical duration). The critical duration was about 150 ms for gratings with low and middle spatial frequencies (0.23 and 0.94 c/deg) while the duration was about 750 ms for gratings with high spatial frequency (3.75 c/deg). This suggests that temporal integration property varies dependently on stimulus spatial frequency. We also attempted to relate the spatial frequency dependency of the temporal integration property to the differences in temporal frequency tuning to different spatial frequency stimuli.  相似文献   

5.
The present study was designed to assess the effects of age on the time course of backward masking. In experiment 1, thresholds for detecting a 10-ms, 500-Hz sinusoidal signal were measured as a function of the temporal separation between the signal and a 50-ms broadband masker. Subjects were younger (18-24) and older (over age 65) adults with normal hearing (thresholds less than 20 dB HL) for frequencies of 4 kHz and below. Younger subjects exhibited less overall masking and steeper recovery functions than did the older adults. Masked thresholds for younger participants approached unmasked thresholds for signal-masker delays greater than 6-8 ms. In contrast, older adults exhibited significant masking even at the longest delay tested (20 ms). In experiment 2, signal duration was decreased to 5 ms for a separate group of younger adults. Although overall thresholds were elevated for the shorter signal duration, the slope of the backward masking recovery function was not different from that observed for younger adults in experiment 1. The results suggest that age, independent of hearing loss, affects the temporal course of backward masking.  相似文献   

6.
Extracellular recordings from the cervical connectives in both long- and short-winged E. carolinus reveal auditory units that are sensitive to frequencies > 15 kHz with best sensitivity at 35 kHz (79 dB SPL threshold). Stimuli in this frequency range also elicit a startle response in long-winged individuals flying on a tether. For single-pulse stimuli, startle and neck connective thresholds decrease with increasing ultrasound duration, consistent with the operation of an exponential integrator with a approximately 32.5-ms time constant. There is evidence for adaptation to long duration pulses (> 20 ms) in the neck connectives, however, as it is more difficult to elicit responses to the later stimuli of a series. For paired-pulse stimuli consisting of 1-ms pulses of 40 kHz, temporal integration was demonstrated for pulse separations < 5 ms. For longer pulse separations, startle thresholds were elevated by 3 dB and appear to be optimally combined. Startle thresholds to 5 ms frequency modulated (FM) sweeps (60-30 kHz) and pure tone pulses (40 kHz) did not differ. The characteristics and sensitivity of this ultrasound-induced startle response did not differ between males and females. As in some other tympanate insects, ultrasound sensitivity in E. carolinus presumably functions in the context of predation from echolocating bats.  相似文献   

7.
The decrease in absolute threshold with increasing stimulus duration (often referred to as "temporal integration") is greater for listeners with normal hearing than for listeners with sensorineural hearing loss. It has been suggested that the difference is related to reduced basilar-membrane (BM) compression in the impaired group. The present experiment tested this hypothesis by comparing temporal integration and BM compression in normal and impaired ears at low levels. Absolute thresholds were measured for 4, 24, and 44 ms pure-tone signals, with frequencies (f(s)) of 2 and 4 kHz. The difference between the absolute thresholds for the 4 and 24 ms signals was used as a measure of temporal integration. Compression near threshold was estimated by measuring the level of a 100 ms off-frequency (0.45f(s)) pure-tone forward masker required to mask a 44 ms pure-tone signal presented at sensation levels of 5 and 10 dB. There was a significant negative correlation between amount of temporal integration and absolute threshold. However, there was no correlation between absolute threshold and compression at low levels; both normal and impaired ears showed a nearly linear response. The results suggest that the differences in integration between normal and impaired ears cannot be explained by differences in BM compression.  相似文献   

8.
This study investigates the controversy regarding the influence of age on the acoustic reflex threshold for broadband noise, 500-, 1000-, 2000-, and 4000-Hz activators between Jerger et al. [Mono. Contemp. Audiol. 1 (1978)] and Jerger [J. Acoust. Soc. Am. 66 (1979)] on the one hand and Silman [J. Acoust. Soc. Am. 66 (1979)] and others on the other. The acoustic reflex thresholds for broadband noise, 500-, 1000-, 2000-, and 4000-Hz activators were evaluated under two measurement conditions. Seventy-two normal-hearing ears were drawn from 72 subjects ranging in age from 20-69 years. The results revealed that age was correlated with the acoustic reflex threshold for BBN activator but not for any of the tonal activators; the correlation was stronger under the 1-dB than under the 5-dB measurement condition. Also, the mean acoustic reflex thresholds for broadband noise activator were essentially similar to those reported by Jerger et al. (1978) but differed from those obtained in this study under the 1-dB measurement condition.  相似文献   

9.
10.
A series of experiments on the detectability of vowels in isolation has been completed. Stimuli consisted of three sets of ten vowels: one synthetic, one from a male talker, and one from a female talker. Vowel durations ranged from 20-160 ms for each of the sets. Thresholds for detecting the vowels in isolation were obtained from well-trained, normal-hearing listeners using an adaptive-tracking paradigm. For a given duration, detection thresholds for vowels calibrated for equal rms sound pressure at the earphones differed by 22 dB across the 30 vowels. In addition, an orderly decrease in vowel thresholds was obtained for increased duration, as predicted from previous data on temporal integration. Several different analyses were performed in an attempt to explain the differential detectability across the 30 vowels. Analyses accounting for audibility reduced threshold variability significantly, but vowel thresholds still ranged over 15 dB. Vowel spectra were subsequently modeled as excitation patterns, and several detection hypotheses were examined. A simple average of excitation levels across excited critical bands provided the best prediction of the level variations needed to maintain threshold-level loudness across all vowels.  相似文献   

11.
Some factors that may affect human perception thresholds of the vertical whole-body vibrations were investigated in two laboratory experiments with recumbent subjects. In the first experiment, the effects of gender and age of subjects on perception were investigated with three groups of 12 subjects, i.e., young males, young females and old males. For continuous sinusoidal vibrations at 2, 4, 8, 16, 31.5 and 63 Hz, there were no significant differences in the perception thresholds between male and female subjects, while the thresholds of young subjects tended to be significantly lower than the thresholds of old subjects. In the second experiment, the effect of vibration duration was investigated by using sinusoidal vibrations, at the same frequencies as above, modulated by the Hanning windows with different lengths (i.e., 0.5, 1.0, 2.0 and 4.0 s) for 12 subjects. It was found that the peak acceleration at the threshold tended to decrease with increasing duration of vibration. The perception thresholds were also evaluated by the running root-mean-square (rms) acceleration and the fourth power acceleration method defined in the current standards. The differences in the threshold of the transient vibrations for different durations were less with the fourth power acceleration method. Additionally, the effect of the integration time on the threshold was investigated for the running rms acceleration and the fourth power acceleration. It was found that the integration time that yielded less differences in the threshold of vibrations for different durations depended on the frequency of vibration.  相似文献   

12.
This paper is concerned with aspects of temporal integration and across-frequency integration in signal detection. Previous experiments on the detection of brief broadband signals (clicks) in continuous broadband noise revealed efficient spectral integration. The extent to which this effect is restricted to a critical time window was investigated by manipulating the temporal relations among the signal components in different frequency regions. In a typical experiment, the signal consists of nine brief Gaussian-shaped tone pulses, equally distributed at 1/3-oct intervals, each with a spectral width of about 1/3 oct, and each equally detectable in white noise. In the synchronized condition (i.e. coinciding peaks of the nine Gaussian envelopes), the detection threshold is reached when the levels of the nine individual tone pulses are about 8 dB below their individual threshold levels (efficient spectral integration). When the signal is progressively desynchronized (i.e. noncoinciding peaks of the Gaussian envelopes), detection threshold is found to increase. This suggests that efficient spectral integration in signal detection is confined to a narrow time window, with a typical value of 30 ms. Similar experiments were performed with respect to the efficiency of temporal integration. For constant-duration signals (100 ms), the detection threshold is found to increase when progressively widening signal bandwidth. The data indicate that the efficient temporal integration in signal detection is confined to a narrow frequency window, which, not surprisingly, corresponds to the critical bandwidth.  相似文献   

13.
Threshold and suprathreshold temporal integration (TI) effects were studied in the crossed and uncrossed human acoustic stapedius reflex. Changes in reflex threshold were compared at four stimulus durations and for six threshold response criteria; suprathreshold effects were similarly compared at four stimulus durations and at five stimulus sound-pressure levels. Our results showed that reflex thresholds were significantly lower for the uncrossed condition and for longer duration stimuli. Both effects were dependent on threshold response criteria. Threshold TI measurements in both crossed and uncrossed conditions were equivalent at low criterion levels (0%-4%, p greater than 0.05) but were significantly larger in the crossed condition at higher criterion levels (5%-6%, p less than 0.05). Prominent suprathreshold effects also occurred. The main effect was characterized by significantly larger reflex magnitudes in the uncrossed condition. Duration dependent slope differences in magnitude intensity functions (MIFs) were also observed and were characterized by steeper slopes for longer duration stimuli. Saturation effects and/or intensity-dependent slope decelerations in MIFs were predominant in the uncrossed condition and for stimulus durations exceeding 20 ms. These data provide further quantitative evidence for asymmetric threshold and suprathreshold response properties of the crossed and uncrossed human acoustic stapedius reflex and demonstrate the dependence of these effects on stimuli of different durations.  相似文献   

14.

Background

We examined development of auditory temporal integration and inhibition by assessing electrophysiological responses to tone pairs separated by interstimulus intervals (ISIs) of 25, 50, 100, 200, 400, and 800 ms in 28 children aged 7 to 9 years, and 15 adults.

Results

In adults a distinct neural response was elicited to tones presented at ISIs of 25 ms or longer, whereas in children this was only seen in response to tones presented at ISIs above 100 ms. In adults, late N1 amplitude was larger for the second tone of the tone pair when separated by ISIs as short as 100 ms, consistent with the perceptual integration of successive stimuli within the temporal window of integration. In contrast, children showed enhanced negativity only when tone pairs were separated by ISIs of 200 ms. In children, the amplitude of the P1 component was attenuated at ISIs below 200 ms, consistent with a refractory process.

Conclusions

These results indicate that adults integrate sequential auditory information into smaller temporal segments than children. These results suggest that there are marked maturational changes from childhood to adulthood in the perceptual processes underpinning the grouping of incoming auditory sensory information, and that electrophysiological measures provide a sensitive, non-invasive method allowing further examination of these changes.  相似文献   

15.
This paper extends previous research on listeners' abilities to discriminate the details of brief tonal components occurring within sequential auditory patterns (Watson et al., 1975, 1976). Specifically, the ability to discriminate increments in the duration delta t of tonal components was examined. Stimuli consisted of sequences of ten sinusoidal tones: a 40-ms test tone to which delta t was added, plus nine context tones with individual durations fixed at 40 ms or varying between 20 and 140 ms. The level of stimulus uncertainty was varied from high (any of 20 test tones occurring in any of nine factorial contexts), through medium (any of 20 test tones occurring in ten contexts), to minimal levels (one test tone occurring in a single context). The ability to discriminate delta t depended strongly on the level of stimulus uncertainty, and on the listener's experience with the tonal context. Asymptotic thresholds under minimal uncertainty approached 4-6 ms, or 15% of the duration of the test tones; under high uncertainty, they approached 40 ms, or 10% of the total duration of the tonal sequence. Initial thresholds exhibited by inexperienced listeners are two-to-four times greater than the asymptotic thresholds achieved after considerable training (20,000-30,000 trials). Isochronous sequences, with context tones of uniform, 40-ms duration, yield lower thresholds than those with components of varying duration. The frequency and temporal position of the test tones had only minor effects on temporal discrimination. It is proposed that a major determinant of the ability to discriminate the duration of components of sequential patterns is the listener's knowledge about "what to listen for and where." Reduced stimulus uncertainty and extensive practice increase the precision of this knowledge, and result in high-resolution discrimination performance. Increased uncertainty, limited practice, or both, would allow only discrimination of gross changes in the temporal or spectral structure of the sequential patterns.  相似文献   

16.
To assess temporal integration in normal hearing, cochlear impairment, and impairment simulated by masking, absolute thresholds for tones were measured as a function of duration. Durations ranged from 500 ms down to 15 ms at 0.25 kHz, 8 ms at 1 kHz, and 2 ms at 4 and 14 kHz. An adaptive 2I, 2AFC procedure with feedback was used. On each trial, two 500-ms observation intervals, marked by lights, were presented with an interstimulus interval of 250 ms. The monaural signal was presented in the temporal center of one observation interval. The results for five normal and six impaired listeners show: (1) normal listeners' thresholds decrease by about 8 to 10 dB per decade of duration, as expected; (2) listeners with cochlear impairments generally show less temporal integration than normal listeners; and (3) listeners with impairments simulated using masking noise generally show the same amount of temporal integration as normal listeners tested in the quiet. The difference between real and simulated impairments indicates that the reduced temporal integration observed in impaired listeners probably is not due to splatter of energy to frequency regions where thresholds are low, but reflects reduced temporal integration per se.  相似文献   

17.
Changes in magnitude and variability of duration, fundamental frequency, formant frequencies, and spectral envelope of children's speech are investigated as a function of age and gender using data obtained from 436 children, ages 5 to 17 years, and 56 adults. The results confirm that the reduction in magnitude and within-subject variability of both temporal and spectral acoustic parameters with age is a major trend associated with speech development in normal children. Between ages 9 and 12, both magnitude and variability of segmental durations decrease significantly and rapidly, converging to adult levels around age 12. Within-subject fundamental frequency and formant-frequency variability, however, may reach adult range about 2 or 3 years later. Differentiation of male and female fundamental frequency and formant frequency patterns begins at around age 11, becoming fully established around age 15. During that time period, changes in vowel formant frequencies of male speakers is approximately linear with age, while such a linear trend is less obvious for female speakers. These results support the hypothesis of uniform axial growth of the vocal tract for male speakers. The study also shows evidence for an apparent overshoot in acoustic parameter values, somewhere between ages 13 and 15, before converging to the canonical levels for adults. For instance, teenagers around age 14 differ from adults in that, on average, they show shorter segmental durations and exhibit less within-subject variability in durations, fundamental frequency, and spectral envelope measures.  相似文献   

18.
Subjects discriminated a "standard" pair of tone bursts (T1, T2) from a "comparison" pair (T1 + delta t, T2 + delta f), containing increments in the duration delta t of the first burst and/or the frequency delta f of the second burst. The threshold (d' = 2.0) for delta t was measured as a function of delta f, and the threshold for delta f as a function of delta t. The integration of increments in duration and frequency was studied as a function of the spectral and temporal separation between T1 and T2. A trade-off between the values of delta t and delta f required for d' = 2.0 performance was observed. This integration takes place when delta t, delta f occur simultaneously in the same spectral region, and when they occur separated by up to 120 ms, or by up to a full octave. The efficiency of integration was similar for all conditions of temporal and spectral separation studied, because the discriminability of delta t and of delta f is also nearly uniform across experimental conditions. The results from all experimental conditions are adequately described by a vector summation model derived from TSD. In a subsidiary experiment, subjects categorized pure tones varying in duration and frequency as "high" or "low" in pitch and "long" or "short" in duration. It was found that combined variations in duration and frequency result in essentially independent perceptual processes, although pitch has a small effect upon the perceived duration. It is concluded that spectral-temporal integration is a general ability operating in a variety of stimulus conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
PURPOSE: The purpose of this study was to determine the pre- and postpubertal 1H magnetic resonance spectroscopic characteristics of the normal testis to establish baseline values for further clinical studies. MATERIALS AND METHODS: The subjects consisted of male volunteers, of whom 19 were prepubertal with ages between 7 and 13 years and 24 were postpubertal with ages between 19 and 39 years. Their testes were evaluated at 1.5 T with magnetic resonance spectroscopy; in addition, testis volumes were measured. Major metabolite peaks were identified and their ratios were calculated. Metabolite differences of testis between pre- and postpubertal age were analyzed. RESULTS: Major constituents of spectra were 3.21 ppm choline and 0.9-1.3 ppm lipid peaks. At the echo time (TE) spectrum of 31 ms, choline/lipid ratios ranged from 0.35 to 8.30 (mean=1.87) in postpubertal males and from 0.06 to 5.45 (mean=0.88) in prepubertal males (P<.013). At the TE spectrum of 136 ms, choline/lipid ratios ranged from 0.66 to 15.42 (mean=4.09) in postpubertal males and from 0.05 to 4.91 (mean=0.9) in prepubertal males (P<.016). CONCLUSIONS: Choline/lipid ratio was higher in the postpubertal period. The existence of higher choline peak in that age group should be due to the initiation of spermatogenesis. The decrease in the lipid peak may represent the effect of testosterone on testicular tissue or may be due to histochemical changes initiated by puberty. The significant decrease in choline/lipid ratio noted after puberty could represent the presence of spermatogenesis. This hypothesis should be evaluated by further studies on postpubertal subjects with impaired spermatogenesis.  相似文献   

20.
Psychophysical pulse-train forward-masking (PTFM) recovery functions were measured in fifteen subjects with the Nucleus mini-22 cochlear implant and six subjects with the Clarion cochlear implant. Masker and probe stimuli were 500-Hz trains of 200- or 77-micros/phase biphasic current pulses. Electrode configurations were bipolar for Nucleus subjects and monopolar for Clarion subjects. Masker duration was 320 ms. Probe duration was either 10 ms or 30 ms. Recovery functions were measured for a high-level masker on a middle electrode in all 21 subjects, on apical and basal electrodes in 7 of the Nucleus and 3 of the Clarion subjects, and for multiple masker levels on the middle electrode in 8 Nucleus subjects and 6 Clarion subjects. Recovery functions were described by an exponential process in which threshold shift (in microA) decreased exponentially with increasing time delay between the offset of the masker pulse train and the offset of the probe pulse train. All but 3 of the 21 subjects demonstrated recovery time constants on a middle electrode that were less than 95 ms. The mean time constant for these 18 subjects was 54 ms (s.d. 17 ms). Three other subjects tested on three electrodes exhibited time constants larger than 95 ms from an apical electrode only. Growth-of-masking slopes depended upon time delay, as expected from an exponential recovery process, i.e., progressively shallower slopes were observed at time delays of 10 ms and 50 ms. Recovery of threshold shift (in microA) for PTFM in electrical hearing behaves inthe same way as recovery of threshold shift (in dB) for pure-tone forward masking in acoustic hearing. This supports the concept that linear microamps are the electrical equivalent of acoustic decibels. Recovery from PTFM was not related to speech recognition in a simple manner. Three subjects with prolonged PTFM recovery demonstrated poor speech scores. The remaining subjects with apparently normal PTFM recovery demonstrated speech scores ranging from poor to excellent. Findings suggest that normal PTFM recovery is only one of several factors associated with good speech recognition in cochlear-implant listeners. Comparisons of recovery curves for 10- and 30-ms probe durations in two subjects showed little or no temporal integration at time delays less than 95 ms where recovery functions have steep slopes. The same subjects exhibited large amounts of temporal integration at longer time delays where recovery slopes are more gradual. This suggests that probe detection depends primarily on detection of the final pulses in the probe stimulus and supports the use of offset-to-offset time delays for characterizing PTFM recovery in electric hearing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号