首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work temperature dependence of heat capacity of cesium tantalum tungsten oxide has been measured first in the range from 7 to 350 K and then between 330 and 630 K, respectively, by precision adiabatic vacuum and dynamic calorimetry. The experimental data were used to calculate standard thermodynamic functions, namely the heat capacity Cp° (T), enthalpy H°(T) − H°(0), entropy S°(T) − S°(0) and Gibbs function G°(T) − H°(0), for the range from T → 0 to 630 K. The structure of CsTaWO6 is refined by the Rietveld method: space group F d3m, Z = 8, a = 10.3793(2) Å, V = 1118.14(4) Å3. The high-temperature X-ray diffraction was used for the determination of temperature of phase transition and coefficient of thermal expansion.  相似文献   

2.
In the present work temperature dependences of heat capacity of carbosilane dendrimers with butyl terminal groups of the third and the fourth generations as well as of the fifth and the sixth generations have been determined first in the range from 6 to 340 K and between 6 and 600 K, respectively, by precision adiabatic vacuum and dynamic calorimetry. In the above temperature ranges the physical transformations have been detected and their thermodynamic characteristics have been estimated and analyzed. The experimental data were used to calculate standard thermodynamic functions, namely the heat capacity , enthalpy Ho(T) − Ho(0), entropy So(T) − So(0) and Gibbs function Go(T) − Ho(T), for the range from T → 0 to (340–600) K. Linear dependences of changing the corresponding thermodynamic functions of the dendrimers on their molecular weight and the number of butyl groups on an outer sphere have been determined.  相似文献   

3.
The dissociative excitation reaction of BrCN induced by the products of the electron cyclotron resonance (ECR) plasma flow of He was studied based on the electrostatic-probe measurements and on the optical emission spectra of the B2Σ+ − X2Σ+ transition of CN radicals. The partial pressures of He and BrCN were 3 and 1 mTorr, respectively, and the partial pressure of H2O, PH2O, was in the range of 0.0–0.6 mTorr. The electron density, ne, showed a negative dependence on PH2O as (2.63 ± 0.13) × 1012 − (0.23 ± 0.10) × 1012 m−3, and the electron temperature, Te, a positive dependence, (2.38 ± 0.36) − (4.51 ± 0.15) eV. The CN(B2Σ+ − X2Σ+) emission intensity showed a negative dependence on PH2O. Based on a kinetic analysis of these PH2O dependencies, the decomposition of BrCN does not proceed via electron impact; instead, decomposition proceeds via the processes involving He+ and/or He metastable atoms.  相似文献   

4.
In this article, the phase compositions, thermal, mechanical and transport properties of both the SrCo0.8Fe0.2O3−δ (SCF) and the SrCo0.8Fe0.1Sn0.1O3−δ (SSCF) ceramic membranes were investigated systematically. As compared with the SCF membrane, the SSCF one had a more promoted thermal shock resistance, which related to its small thermal expansion coefficient between them and an enhanced composite structure for it. For the SCF membrane, a permeation rate of 1.9 × 10−6 mol cm−2 s−1 was obtained at 1000 °C and under the oxygen partial pressure gradient of PO2 (h)/PO2 (l) = 0.209 atm/0.012 atm; however, the permeation rate was 2.5 × 10−6 mol cm−2 s−1 for the SSCF one in the same measuring condition. In addition, both peak values of total electrical conductivity (σe) for SSCF sample appeared with increasing temperature. The second peak value of σe for SSCF one was regarded as the contribution from its minor phase, which appeared with the mixed conducting behavior resulting from partly Co-dissolving into its lattice.  相似文献   

5.
The excess molar enthalpies () for the binary mixtures of trimethyl phosphate (TMP) with alkanols {CH3(CH2)nOH, n = 0–3} have been measured with an isothermal calorimeter at 298.15 K and atmospheric pressure. The values are positive for all the mixtures over the whole composition range. The values increase in the order methanol < ethanol < 1-propanol < 1-butanol. The experimental results have been correlated with the Redlich–Kister equation.  相似文献   

6.
A simple and accurate expression for radial distribution function (RDF) of the Lennard-Jones fluid is presented. The expression explicitly states the RDF as a continuous function of reduced interparticle distance, temperature, and density. It satisfies the limiting conditions of zero density and infinite distance imposed by statistical thermodynamics. The distance dependence of this expression is expressed by an equation which contains 11 adjustable parameters. These parameters are fitted to 353 RDF data, obtained by molecular dynamics calculations, and then expressed as functions of reduced distance, temperature and density. This expression, having a total of 65 constants, reproduces the RDF data with an average root-mean-squared deviation of 0.0152 for the range of state variables of 0.5  T*  5.1 and 0.35  ρ*  1.1 (T*=kT/ε and ρ* = ρσ3 are reduced temperature and density, respectively). The expression predicts the pressure and the internal energy of the Lennard-Jones fluid with an uncertainty that is comparable to that obtained directly from the molecular dynamics simulations.  相似文献   

7.
A 3D network [Cu(tmen)(tp)(H2O)2]n (1) (tmen = N,N,N′,N′-tetramethylethylenediamine; tp = terephthalate) and a 2D sheet [Cu(pyrazole)2(tp)]n (2), featuring 1D chains interwoven by hydrogen bonds, have been prepared and characterized by means of X-ray analyses and magnetic measurements. For 1, coordinative zigzag chains contain Cu(II) centers capped by the chelate ligand tmen, in which the tetragonal structure is elongated due to Jahn–Teller distortion. Coordinated water molecules are hydrogen-bonded to two free carboxylate oxygens of tp bridges, leading to the observed 3D structure. The use of the non-chelating capping ligand pyrazole produced the covalent-bonded 1D linear compound 2 with hydrogen bonds. A severe octahedral distortion of the Cu(II) center arises from a small bite angle (52.3(1)°) of two carboxylate oxygen atoms of tp, which are in turn hydrogen-bonded to the N–H groups of pyrazole ligands coordinated to Cu(II) atoms in neighboring chains. Magnetic data were fitted with the high-temperature series expansion for the Heisenberg chain spin Hamiltonian H = −JiSi · Si + 1 together with consideration of the molecular field approximation (zJ′). Both compounds interestingly exhibit ferromagnetic interactions with g = 2.17, J = 4.08 cm−1, zJ′ = −0.28 cm−1 for 1 and g = 2.09, J = 1.47 cm−1, zJ′ = −0.04 cm−1 for 2. By taking into account structural parameters of distances between Cu atoms, it is reasonably assigned that the ferromagnetic couplings (J > 0) in these systems originate from the hydrogen bonds. The spin density of the dx2-y2 orbital on a Cu(II) atom in a chain is propagated and induced over the dz2 orbital of another Cu(II) atom in an adjacent chain. This orbital orthogonality gives rise to such interactions. The negative zJ′ term suggests that the tp bridges communicate only tiny antiferromagnetic interactions.  相似文献   

8.
Effects of sintering atmospheres on properties of SrCo0.4Fe0.5Zr0.1O3−δ mixed-conducting membranes were in detail studied in terms of sintering behavior, electrical conductivity and oxygen permeability. The sintering atmospheres were 100% N2, 79% N2–21% O2, 60% N2–40% O2, 40% N2–60% O2, 20% N2–80% O2 and 100% O2 (in vol.%), and the prepared membranes were correspondingly denoted as S-0, S-21, S-40, S-60, S-80 and S-100, respectively. It was found that the properties of membranes were strongly dependent on the sintering atmosphere. As the oxygen partial pressure in the sintering atmosphere (PO2) increased, sintering ability, electrical conductivity and oxygen permeability decreased at first, which was in the order of S-0 > S-21 > S-40. However, as PO2 increased further, sintering ability, electrical conductivity and oxygen permeability increased gradually: S-40 < S-60 < S-80 < S-100. And the S-100 membrane had the best sintering ability, electrical conductivity and oxygen permeability in all membranes.  相似文献   

9.
Poly(amide imide) (PAI) was synthesized using 1,2,4-benzenetricarboxylic anhydride (BTBA) and 4,4′-methylenebis(phenyl isocyanate) (MBPI). SPEEK/PAI blend membranes were prepared and investigated by NMR, GPC, FT-IR and AFM. The chemical structures of PAI and SPEEK were characterized by using NMR and FT-IR. The adsorption of the SPEEK/PAI blend membrane of water or methanol solution was also characterized. The significant swelling of the blend membrane in concentrated methanol solution was explained by the solubility parameter. The water diffusion coefficient (DH2O) was related to the lambda value of the membrane. The SPEEK/PAI blend membrane had a lower proton conductivity and methanol permeability than Nafion. However, the relative selectivity (proton conductivity divided by methanol permeability) of the SPEEK/PAI 70/30 (w/w) blend membrane was 3.46 × 104 S s cm−3, which is closed to that of Nafion (3.30 S s cm−3).  相似文献   

10.
The kinetic isotope effect kF+CH4/kF+CD4 has been determined by reacting F atoms with mixtures of CH4 and CD4, using a discharge-flow-mass spectrometric technique. Experiments were carried out at four temperatures in the temperature range 183–298 K. The Arrhenius expression corresponding to the results is kF+CH4/kF+CD4=(0.99±0.02)×exp[(100±5)/T]. The present results are compared with previous published experimental and theoretical results.  相似文献   

11.
[M(CO)4PPh3] (M = Mo, W) were trapped at 77 K in X-irradiated single crystals of M(CO)5PPh3 and studied by EPR. Structures of [M(CO)4PPh3] (M = Cr, Mo, W) were optimized by DFT; predicted g and 31P-hyperfine tensors agree with experiments for M = Mo, W. The anions adopt a slightly distorted pyramidal structure with PPh3 in basal position and the spin mostly delocalized in a metal-dz2 orbital and carbon-pz orbitals of carbonyls. The EPR tensors are slightly modified by annealing, they suggest that new constraints in the matrix distort the structure of [M(CO)4PPh3] (M = Cr, Mo, W).  相似文献   

12.
The low temperature heat capacities of N-(2-cyanoethyl)aniline were measured with an automated adiabatic calorimeter over the temperature range from 83 to 353 K. The temperature corresponding to the maximum value of the apparent heat capacity in the fusion interval, molar enthalpy and entropy of fusion of this compound were determined to be 323.33 ± 0.13 K, 19.4 ± 0.1 kJ mol−1 and 60.1 ± 0.1 J K−1 mol−1, respectively. Using the fractional melting technique, the purity of the sample was determined to be 99.0 mol% and the melting temperature for the tested sample and the absolutely pure compound were determined to be 323.50 and 323.99 K, respectively. A solid-to-solid phase transition occurred at 310.63 ± 0.15 K. The molar enthalpy and molar entropy of the transition were determined to be 980 ± 5 J mol−1 and 3.16 ± 0.02 J K−1 mol−1, respectively. The thermodynamic functions of the compound [HT − H298.15] and [ST − S298.15] were calculated based on the heat capacity measurements in the temperature range of 83–353 K with an interval of 5 K.  相似文献   

13.
The enthalpies of combustion of 3-formylchromone (3F), 3-formyl-6-methylchromone (3F6M) and 3-formyl-6-isopropylchromone (3F6I) were determined by combustion calorimetry. The molar combustion energies () of the 3F, 3F6M and 3F6I are: −(4452.4 ± 1.8), −(5115.6 ± 2.7) and −(6411.4 ± 2.5) kJ mol−1, respectively. The formation enthalpies in the crystalline state () are: −(340.2 ± 2.2), −(355.1 ± 3.1) and −(415.5 ± 3.0) kJ mol−1, respectively.s  相似文献   

14.
The enthalpy and entropy of sublimation of N-ethylthiourea were obtained from the temperature dependence of its vapour pressure measured by both the torsion–effusion and the Knudsen effusion method in the temperature range 360–380 K. The compound undergoes no solid-to-solid phase transition or decomposition below 380 K. The pressure against reciprocal temperature resulted in lg(p, kPa) = (13.40 ± 0.27) − (6067 ± 102) /T(K). The molar sublimation enthalpy and entropy at the mid interval temperature were ΔsubHm(370 K) = (116.1 ± 2.0) kJ mol−1 and ΔsubSm(370 K) = (218.0 ± 5.2) J mol−1 K−1, respectively. The same quantities derived at 298.15 K were (118.8 ± 2.1) kJ mol−1 and (226.1 ± 5.5) J mol−1 K−1, respectively.  相似文献   

15.
Molecular dynamics simulations have been carried out to determine the Maxwell–Stefan diffusivity Đ of C1–C4 linear alkanes for a range of molecular loadings, q, in AFI, MOR, MTW, and MFI zeolites. Configurational-Bias Monte Carlo simulations were used to determine the thermodynamic correction factor, Γ ≡ ∂ ln f/∂ ln q. For diffusion in the large 1D pores of AFI, Đ is proportional to 1/Γ. In other zeolite topologies with smaller pore sizes, though such a direct proportionality is not observed, the Đq dependence appears to be closely linked to the 1/Γq characteristics, especially when the latter exhibits strong inflection.  相似文献   

16.
Novel diphenylacetylenes with both trimethylsilyl groups and other substituents (R2C6H3CCC6H4-p-SiMe3, R = m,p-Cl,Cl, m,m-Cl,Cl, m,p-Br,Br, m,m-Br,Br, m,p-Me,Me, m,m-Me,Me, 1a–f, respectively) were polymerized with TaCl5n-Bu4Sn to produce solvent-soluble polymers (2a–f). Most polymers (2a–e) had high molecular weight over 1 × 106, and gave free-standing membranes by the solution casting method. Desilylation of these Si-containing polymer membranes was carried out with trifluoroacetic acid (TFA), which afforded solvent-insoluble desilylated polymer membranes (3a–e). According to thermogravimetric analysis (TGA), both Si-containing and desilylated polymers showed high thermal stability (T0 ≥ 420 °C). The fractional free volume (FFV) of both Si-containing and desilylated polymer membranes (2a–d, 3a–d) were fairly large (ca. 0.27–0.32), while the FFVs of membranes (2e, 3e) were rather small (0.28 and 0.24). The oxygen permeability coefficients (PO2) of 2a was as high as 5400 barrers, which is the largest among all the poly(diphenylacetylene) derivatives. Polymers 2b–d also exhibited high oxygen permeability, and their desilylated ones 3b–d retained similar high oxygen permeability. On the other hand, the PO2 values of 2e and 3e were 1200 and 530 barrers, respectively, which are smaller than those of the halogen-containing polymers (2a–d and 3a–d).  相似文献   

17.
The rate constants, k1 and k2 for the reactions of C2F5OC(O)H and n-C3F7OC(O)H with OH radicals were measured using an FT-IR technique at 253–328 K. k1 and k2 were determined as (9.24 ± 1.33) × 10−13 exp[−(1230 ± 40)/T] and (1.41 ± 0.26) × 10−12 exp[−(1260 ± 50)/T] cm3 molecule−1 s−1. The random errors reported are ±2 σ, and potential systematic errors of 10% could add to the k1 and k2. The atmospheric lifetimes of C2F5OC(O)H and n-C3F7OC(O)H with respect to reaction with OH radicals were estimated at 3.6 and 2.6 years, respectively.  相似文献   

18.
Two new cadmium(II)–terephthalate complexes, 1{[Cd2(μ-terephthalate)2(L1)2]·9H2O} (1) and [{Cd(H2O)(L2)}2(μ-terephthalate)](terephthalate) · 10H2O (2), where L1 = (E)-N1,N1-diethyl-N2-(1-(pyridin-2-yl)ethylidene)ethane-1,2-diamine; L2 = N,N′-bis-(1-pyridin-2-yl-ethylidene)-ethane-1,2-diamine; have been synthesized by a conventional solution method. Characterization by single crystal X-ray crystallography shows that compound 1 is composed of 1-D polymeric zig-zag chains with distorted pentagonal-bipyramidal cadmium centers. Compound 2 consists of centrosymmetric dinuclear complexes with a distorted pentagonal-bipyramidal cadmium center in which one terephthalate ligand bridges the metal centres and another terephthalate anion with water of crystallization forms a H-bonding network.  相似文献   

19.
The modeling of liquid–vapor equilibrium in ternary mixtures that include substances found in alcoholic distillation processes of wine and musts is analyzed. In particular, vapor–liquid equilibrium in ternary mixtures containing water + ethanol + cogener has been modeled using parameters obtained from binary mixture data only. The congeners are substances that although present in very low concentrations, of the order of part per million, 10−6 to 10−4 mg/L, are important enological parameters [1] and [2]. In this work two predictive models, the PSRK equation of state and the UNIFAC liquid phase model and two semipredictive activity coefficient models: NRTL and UNIQUAC have been used. The results given by these different models have been compared with literature data and conclusions about the accuracy of the models studied are drawn, recommending the best models for correlating and predicting the phase equilibrium in this type of mixtures.  相似文献   

20.
The preparation of bulk MoVTe(Sb)Nb mixed oxide catalysts using a traditional slurry method, results in highly active catalysts for oxidative dehydrogenation of ethane to ethene. Several major phases including orthorhombic M1, hexagonal M2 or MoxM1−xO2.8 (M = V or Nb) have been detected in the catalysts from characterization results such as X-ray diffraction (XRD), SEM and EDX analyses. Ethane conversion and yield to ethene increase with increasing content of the M1 phase in the catalysts. The maximum yield of ethene (ca. 87% selectivity and ca. 90% conversion, STYC2H4 of 176 g  h−1) has been obtained with a MoV0.31Te0.2Nb0.14 mixed oxide catalyst, calcined at 873 K under nitrogen, containing almost pure orthorhombic M1 phase and small amounts of unidentified impurity phases, operating at a relatively low reaction temperature of 673 K. The orthorhombic M1 phase has been shown to be the most active in ethane activation and the most selective for ethene formation. The hexagonal M2 phase is relatively inactive in ethane activation and less selective for ethene formation. The Te-free phases such as Sb4Mo10O31 and MoxM1−xO2.8 (M = V or Nb) show the lowest selectivity to ethene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号