首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The effect of manganese on the dispersion, reduction behavior and active states of surface of supported copper oxide catalysts have been investigated by XRD, temperature‐programmed reduction and XPS. The activity of methanol synthesis from CO2/H2 was also investigated. The catalytic activity over CuO‐MnOx/γ‐Al2O3 catalyst for CO2 hydrogenation is higher than that of CuO/γ‐Al2O3. The adding of manganese is beneficial in enhancing the dispersion of the supported copper oxide and make the TPR peak of the CuO‐MnKx/γ‐Al2O3 catalyst different from the individual supported copper and manganese oxide catalysts, which indicates that there exists strong interaction between the copper and manganese oxide. For the CuO/γ‐Al2O3 catalyst there are two reducible copper oxide species; α and β peaks are attributed to the reduction of highly dispersed copper oxide species and bulk CuO species, respectively. For the CuO‐MnOx/γ‐Al2O3 catalyst, four reduction peaks are observed, α peak is attributed to the dispersed copper oxide species; β peak is ascribed to the bulk CuO; γ peak is attributed to the reduction of high dispersed CuO interacting with manganese; δ peak may be the reduction of the manganese oxide interacting with copper oxide. XPS results show that Cu+ mostly existed on the working surface of the Cu‐Mn/γ‐Al2O3 catalysts. The activity was promoted by Cu with positive charge which was formed by means of long path exchange function between Cu? O? Mn. These results indicate that there is synergistic interaction between the copper and manganese oxide, which is responsible for the high activity of CO2 hydrogenation.  相似文献   

2.
Millimeter size γ‐Al2O3 beads were prepared by alginate assisted sol–gel method and grafting organic groups with propyl sulfonic acid and alkyl groups as functionalized γ‐Al2O3 bead catalysts for fructose dehydration to 5‐hydroxymethylfurfural (5‐HMF). Experiment results showed that the porous structure of γ‐Al2O3 beads was favorable to the loading and dispersion of active components, and had an obvious effect on the properties of the catalyst. The lower calcination temperature of γ‐Al2O3 beads increased the specific surface area, the hydrophobicity and the activity of catalysts. Competition between the reaction of alkyl groups and ‐SH groups with surface hydroxyl during the preparation process of the catalyst influenced greatly the acid site densities, hydrophobic properties and activity of the catalyst. With an increase in the alkyl group chain, the hydrophobicity of catalysts increased obviously and the activity of the catalyst was enhanced. The most hydrophobic catalyst C16‐SO3H‐γ‐Al2O3–650°C exhibited the highest yield of 5‐HMF (84%) under the following reaction conditions: reaction medium of dimethylsulfoxide/H2O (V/V, 4:1), catalyst amount of 30 mg, temperature of 110°C and reaction time of 4 hr.  相似文献   

3.
Several TiO2 and γ‐Al2O3 supported catalyst systems were prepared by a novel way and characterized by X‐ray diffraction, Raman spectroscopy and BET surface area measurement. The results show: (1) all the samples, including MoO3/TiO2, WO3/TiO2, V2O5/TiO2, FeSO4/γ‐Al2O3, Al2 (SO4)3/γ‐Al2O3, K2CO3/‐Al2O3 and so on, prepared by impregnating TiO2·H2O or pseudo‐boehmite AlO(OH) with the active components then calcining at a high temperature exhibit much larger surface areas than that of pure TiO2 or γ‐Al2O3 calcined at the same temperature; (2) the surface area of the sample increases with the increase in the coverage of active component on the surface of the support; (3) when the content of active component reaches its utmost monolayer dispersion capacity, the surface area of the sample is the largest, and then decreases when the content of active component exceeds its dispersion threshold.  相似文献   

4.
Nano n‐propylsulfonated γ‐Al2O3 is easily prepared by the reaction of nano γ‐Al2O3 with 1,3‐propanesultone. This reagent can be used as an efficient catalyst for the synthesis of spiro [indoline‐3,4‐pyrazolo[3,4‐e][1,4]thiazepine]diones in aqueous media. This new method consistently has the advantages of excellent yields and short reaction times. Further, the catalyst can be reused and recovered several times. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The activities of a MnO/γ‐Al2O3 catalyst for the selective reduction of methyl benzoate to benzaldehyde have been studied in a continuous flow reactor. Characterization of the catalyst has been conducted by XRD, XPS, NH3‐TPD and TPD‐IR. XRD and XPS results revealed that the steady state catalyst is mainly MnO2/γ‐AlO3 before reduction and MnO/γ‐Al2O3 after reduction. Monolayer dispersion capacity obtained by XPS method is about w (Mn)11.3% TPD‐IR results revealed that there are only L acidic centers on the catalytic surface. NH3‐TPD determinations have verified that the catalyst with a certain number of moderate strength acidic sites is advantageous to hydrogenation of methyl benzoate to benzaldehyde.  相似文献   

6.
Dimethyldichlorosilane, one of the most consumed organosilicon monomers in the industry, can be prepared in a highly efficient and environmentally friendly synthesis method of disproportionating methylchlorosilanes. However, the internal mechanism of the reaction remains unclear. In this paper, the mechanism catalyzed by AlCl3/MIL‐53(Al) and AlCl3/MIL‐53(Al)@γ‐Al2O3 catalysts was calculated at B3LYP/6‐311++G(3df, 2pd) level by using the density functional theory (DFT). The results showed that although the two catalysts had similar active structures, the catalytic effects were significantly different. The Lewis acid center on the surface of γ‐Al2O3 in the core‐shell catalyst is complementary to the classic Lewis acid AlCl3 through the spatial superposition effect, which greatly improves the Lewis acid catalytic activity of AlCl3/MIL‐53(Al)@γ‐Al2O3.  相似文献   

7.
Perylene diimide‐modified magnetic γ‐Fe2O3/CeO2 nanoparticles (γ‐Fe2O3/CeO2‐PDI) were prepared and exhibited excellent peroxidase‐like activity. The samples were characterized by HR‐TEM, XRD, Raman, N2 adsorption, magnetic strength and XPS. The obtained γ‐Fe2O3/CeO2‐PDI had size of 10~20 nm with high specific surface area of 77 m2/g, and could be easily separated from the aqueous solution by using a magnet, which are in favor of its practical application. Due to the decoration of PDI, the γ‐Fe2O3/CeO2‐PDI possessed more surface defects (Ce3+) and active oxygen species than that of γ‐Fe2O3/CeO2, resulting in the outstanding catalytic performance. And the composite catalyst also showed highly sensitive and selectivity toward VC with a limit of detection of 0.45 μM. Based on the fluorescent results, a possible hydroxyl radical (?OH) catalytic mechanism was proposed. It is believed that the as‐prepared γ‐Fe2O3/CeO2‐PDI nanoparticles are promising biosensors applied for biomedical and food analysis.  相似文献   

8.
A simple, efficient and eco‐friendly procedure has been developed using Cu(II) immobilized on guanidinated epibromohydrin‐functionalized γ‐Fe2O3@TiO2 (γ‐Fe2O3@TiO2‐EG‐Cu(II)) for the synthesis of 2,4,5‐trisubstituted and 1,2,4,5‐tetrasubstituted imidazoles, via the condensation reactions of various aldehydes with benzil and ammonium acetate or ammonium acetate and amines, under solvent‐free conditions. High‐resolution transmission electron microscopy analysis of this catalyst clearly affirmed the formation of a γ‐Fe2O3 core and a TiO2 shell, with mean sizes of about 10–20 and 5–10 nm, respectively. These data were in very good agreement with X‐ray crystallographic measurements (13 and 7 nm). Moreover, magnetization measurements revealed that both γ‐Fe2O3@TiO2 and γ‐Fe2O3@TiO2‐EG‐Cu(II) had superparamagnetic behaviour with saturation magnetization of 23.79 and 22.12 emu g?1, respectively. γ‐Fe2O3@TiO2‐EG‐Cu(II) was found to be a green and highly efficient nanocatalyst, which could be easily handled, recovered and reused several times without significant loss of its activity. The scope of the presented methodology is quite broad; a variety of aldehydes as well as amines have been shown to be viable substrates. A mechanism for the cyclocondensation reaction has also been proposed.  相似文献   

9.
Laser Induced Breakdown Spectroscopy (LIBS) method is introduced as a novel approach in this work to study catalyst deactivation of V2O5/γ‐‐Al2O3 for gas‐phase dehydration of glycerol and producing acrolein. The LIBS results of V2O5/γ‐Al2O3 samples are compared with those data that are obtained by Inductively Coupled Plasma Optical Emission Spectrometry (ICP‐OES). Experimental data of LIBS data specify that line intensities of vanadium are decreased by deactivation of V2O5/γ‐Al2O3 catalyst. A comparison between the results of LIBS test as well as ICP‐OES analysis shows that the amount of vanadium is decreased in the catalyst. Moreover, coke formation changes the surface of the catalyst. The results of deactivation of V2O5/γ‐Al2O3 are also compared with Pd/C catalyst deactivation.  相似文献   

10.
A magnetically separable catalyst Al2O3‐MgO/Fe3O4 was prepared by Al2O3‐MgO supported on magnetic oxide Fe3O4 and charactered by FT‐IR, XRD and SEM. The mixed oxides afforded high catalytic activity and selectivity for synthesis of 1‐phenoxy‐2‐propanol from phenol and propylene oxide with 80.3% conversion and 88.1% selectivity to 1‐phenoxy‐2‐propanol. Especially, facile separation of the catalyst by a magnet was obtained and the catalytic performance of the recovered catalyst was unaffected even at the forth run.  相似文献   

11.
The oxidant‐free dehydrogenation of n‐pentanol over copper based catalysts was investigated in this paper. The effect of metal modification on the activity and stability of the copper catalyst supported on γ‐Al2O3 and La2O3 (Cu/γ‐Al2O3‐La2O3) was clarified and a Cr modified Cu/Al2O3‐La2O3 (Cu‐Cr/γ‐Al2O3‐La2O3) showed the best catalytic performance. The conversion of n‐pentanol was 70.0% and the selectivity for n‐pentanal increased to 97.1% over Cu‐Cr/γ‐Al2O3‐La2O3. X‐ray diffraction and temperature programmed reduction of H2 indicated that the addition of Cr favors the formation and reduction of the copper oxide, and the dispersion of the active Cu0 species, accounting for the good activity and stability of this catalyst. Furthermore, the lower amount of acidic sites in Cu‐Cr/γ‐Al2O3‐La2O3 is suggested to suppress the dehydration in oxidant‐free dehydrogenation of n‐pentanol, accounting for the higher selectivity for n‐pentanal.  相似文献   

12.
We present a novel strategy for the scalable fabrication of γ‐Fe2O3@3DPCF, a three‐dimensional porous carbon framework (PCF) anchored ultra‐uniform and ultra‐stable γ‐Fe2O3 nanocatalyst. The γ‐Fe2O3@3DPCF nanocomposites were facilely prepared with the following route: condensation of iron(III) acetylacetonate with acetylacetonate at room temperature to form the polymer precursor (PPr), which was carbonized subsequently at 800 °C. The homogeneous aldol condensation offered an ultra‐uniform distribution of iron, so that the γ‐Fe2O3 nanoparticles (NPs) were uniformly distributed in the 3D carbon architecture with the average size of approximate 20 nm. The Fe2O3 NPs were capped with carbon, so that the iron oxide maintained its γ‐phase instead of the more stable α‐phase. The nanocomposite was an excellent catalyst for the reduction of nitroarene; it gave >99 % conversion and 100 % selectivity for the reduction of nitroarenes to the corresponding anilines at 100 °C. The fabrication of the γ‐Fe2O3@3DPCF nanocatalyst represents a green and scalable method for the synthesis of novel carbon‐based metal oxide nanostructures.  相似文献   

13.
《中国化学会会志》2018,65(8):960-969
In the present study, Fe2+ and Ni2+ immobilized on hydroxyapatite‐core‐shell γ‐Fe2O3 (γ‐Fe2O3@HAp‐Fe2+ and γ‐Fe2O3@HAp‐Ni2+) with a high surface area has been synthesized and characterized by Fourier transform infrared (FTIR), X‐ray diffraction (XRD), vibrating sample magnetometer (VSM), transmission electron microscopy (TEM), and scanning electron microscope (SEM) techniques. Then, γ‐Fe2O3@HAp‐Fe2+ and γ‐Fe2O3@HAp‐Ni2+ were used as a new and magnetically recoverable nano catalyst for the selective oxidation of sulfides to sulfoxides with 33% aqueous H2O2 (0.5 mL) as an oxidant at room temperature in good to excellent yields and short reaction time. Nontoxicity of reagent, mild reaction condition, inexpensive and high catalytic activity, simple experimental procedure, short period of conversion and excellent yields, and ease of recovery from the reaction mixture using an external magnet are the advantages of the present method.  相似文献   

14.
The influence of coating of 5.0 (w/w%) Cu/γ‐Al2O3 catalyst by different ratios of polystyrene on the physicochemical and textural properties was studied. The physicochemical and textural properties of polystyrene‐`Cu/γ‐Al2O3 catalysts were investigated by N2 adsorption, O2 chemisorption, FTIR, XRD, TEM, and SEM. In addition, the kinetics of H2O2 decomposition as a model redox reaction over polymer coated and uncoated catalysts was investigated. The highest activity was achieved by 0.06 wt% polystyrene‐5.0Cu/γ‐Al2O3 catalyst. The parent 5.0Cu/γ‐Al2O3 catalyst showed auto‐catalytic first order mechanism, which was subjected to a pronounced modification to a simple first order one upon coating by polystyrene. This modification in the mechanism was accompanied with an increase in the apparent activation energy of the reaction. The observed high activity of 0.06 wt% polystyrene‐5.0Cu/γ‐Al2O3 catalyst was attributed to the role of polymer in enhancement of the degree of dispersion of the surface copper. However, the modification in kinetics of the reaction was attributed to the difference in the nature of Cu active sites namely, the polymer protected the metallic copper species on the surface of γ‐Al2O3 support against possible oxidation to copper sub‐oxides and/or that polymer might change the hydrophilic properties of the reaction media.  相似文献   

15.
In this study, Ag, Ni2+, and Fe2+ immobilized on hydroxyapatite‐core‐shell γ‐Fe2O3 nanoparticles (γ‐Fe2O3@HAp‐Ag, γ‐Fe2O3@HAp‐Ni2+, and γ‐Fe2O3@HAp‐Fe2+) as a new and reusable Lewis acid magnetic nanocatalyst was successfully synthesized and reported for an atom economic, extremely facile, and environmentally benign procedure for the synthesis of highly functionalized tetrahydropyridines derivatives 4a‐t is described by one‐pot five‐component reaction of 2 equiv of aldehydes 1 , 2 equiv of amines 2 , and 1 equiv of methyl acetoacetate 3 in EtOH at room temperature in good to high yields and short reaction time. The presented methodology offers several advantages such as easy work‐up procedure, reusability of the magnetic nanocatalyst, operational simplicity, green synthesis avoiding toxic reagents and solvent, mild reaction conditions, and no tedious column chromatographic separation.  相似文献   

16.
The structure of FeOx species supported on γ‐Al2O3 was investigated by using Fe K‐edge X‐ray absorption fine structure (XAFS) and X‐ray diffraction (XRD) measurements. The samples were prepared through the impregnation of iron nitrate on Al2O3 and co‐gelation of aluminum and iron sulfates. The dependence of the XRD patterns on Fe loading revealed the formation of α‐Fe2O3 particles at an Fe loading of above 10 wt %, whereas the formation of iron‐oxide crystals was not observed at Fe loadings of less than 9.0 wt %. The Fe K‐edge XAFS was characterized by a clear pre‐edge peak, which indicated that the Fe?O coordination structure deviates from central symmetry and that the degree of Fe?O?Fe bond formation is significantly lower than that in bulk samples at low Fe loading (<9.0 wt %). Fe K‐edge extended XAFS oscillations of the samples with low Fe loadings were explained by assuming an isolated iron‐oxide monomer on the γ‐Al2O3 surface.  相似文献   

17.
We report the direct production of 1,3‐butadiene from the dehydration of 2,3‐butandiol by using alumina as catalyst. Under optimized kinetic reaction conditions, the production of methyl ethyl ketone and isobutyraldehyde, formed via the pinacol–pinacolone rearrangement, was markedly reduced and almost 80 % selectivity to 1,3‐butadiene and 1,3‐butadiene could be achieved. The presence of water plays a critical role in the inhibition of oligomerization. The amphoteric nature of γ‐Al2O3 was identified as important and this contributed to the improved catalytic selectivity when compared with other acidic catalysts.  相似文献   

18.
In general, the conductivity of polypyrrole (PPy) is reduced by addition of magnetic nanoparticles as the additives owing to insulating effect of magnetic nanoparticles. In this article, novel electromagnetic functionalized PPy composite nanostructures were prepared by a template‐free method associated with γ‐Fe2O3 nano‐needles as the hard templates in the presence of p‐toluene‐sulfonic acid (p‐TSA) and FeCl3·6H2O as the dopant and oxidant, respectively. It was found that the molar ratio of γ‐Fe2O3 to pyrrole monomer represented by [γ‐Fe2O3]/[Py] ratio strongly affected the morphology and the conductivity of the γ‐Fe2O3/PPy composite nanostructures. A growth mechanism for the composite nanostructures was proposed based on the variance of the morphology with the [γ‐Fe2O3]/[Py] ratio. Compared with previously reported γ‐Fe2O3/PPy composites, the as‐prepared novel composite nanostructures showed much higher conductivity (up to ~50 times higher). Moreover, the synthesized γ‐Fe2O3/PPy composite nanostructures displayed ferromagnetic behavior with a high coercive force. Explanations for these interesting observations were made in terms of the magnetic interaction between ferromagnetic γ‐Fe2O3 nano‐needles and spin‐polaron of PPy nanotubes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4446–4453, 2009  相似文献   

19.
In this study, we explored the feasibility of using electrochemically generated γ‐LixV2O5 as an insertion‐type anode in the lithium‐ion capacitor (LIC) with activated carbon (AC) as a cathode. Along with the native form of V2O5, their carbon composites are also used as the electrode material which is prepared by high‐energy ball milling. The electrochemical pre‐lithiation strategy is used to generate the desired γ‐phase of V2O5 (γ‐LixV2O5). Under the optimized mass loading conditions, the LICs are assembled with γ‐LixV2O5 as anode and AC as a cathode in the organic medium. Among the different LICs fabricated, AC/γ‐LixV2O5‐BM50 configuration delivered an energy density of 33.91 Wh kg?1 @ 0.22 kW kg?1 with excellent capacity retention characteristics. However, a dramatic increase in energy density (43.98 Wh kg?1@0.28 kW kg?1) is noted after the electrolyte modification with fluoroethylene carbonate. The high temperature performance of the assembled LIC is also studied and found that γ‐LixV2O5 phase can be used as a potential battery‐type component to construct high‐performance hybrid charge storage devices.  相似文献   

20.
Maghemite (γ‐Fe2O3) colloid has been synthesized by coprecipitation of ferrous and ferric salts in alkaline medium and oxidation. The obtained nanoparticles were complexed with a phosphate macromonomer—penta(propylene glycol) methacrylate phosphate (PPGMAP). Complexes with the weight ratio PPGMAP/γ‐Fe2O3 0.01–10 were investigated using a range of characterization methods. The amount of PPGMAP attached to the particles was about 22 wt %. The size and size distribution of the γ‐Fe2O3 core particles in the dry state was measured by TEM. To complete the TEM images, the hydrodynamic size of the nanoparticles including polymer shell and the maghemite core was determined by DLS measurements in toluene. Magnetic poly(glycidyl methacrylate) (PGMA) nanospheres were obtained by Kraton G 1650‐stabilized and 2,2′‐azobisisobutyronitrile‐initiated polymerization of glycidyl methacrylate (GMA) in toluene or toluene/cyclohexane mixture in the presence of PPGMAP‐coated γ‐Fe2O3 colloid. The effect of Kraton G 1650 concentration on the morphology, PGMA nanosphere size and polydispersity was investigated. The particles were characterized also by both thermogravimetric analysis and magnetic measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4982–4994, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号