首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Various mixed liquid crystals containing crown ether‐cholesteryl liquid crystal, benzo‐15‐crown‐5‐COO‐C27H45 (B15C5‐COOCh), with various common cholesteric liquid crystals, e.g., cholesteryl chloride, cholesteryl benzoate and cholesteryl palmitate, were prepared and studied using polarizing microscopy and differential scanning calorimetry. Investigating the concentration effect of B15C5‐COOCh in mixed liquid crystals revealed that the addition of B15C5‐COOCh resulted in wider phase transition temperature ranges of these cholesteryl liquid crystals. The stability of these B15C5‐COOCh/cholesteryl mixed liquid crystals was studied using comprehensive graphic molecular modeling computer programs (Insight II and Discover) to calculate their molecular energy and stability energy. The effect of salts, e.g. Na+, Co3+, Y3+ and La3+, on the transition temperature range of the mixed liquid crystals was also investigated. The crown ether cholesteric liquid crystal B15C5‐COOCh was applied both as a surfactant and an ion transport carrier to transport metal ions through liquid membranes. Cholesteryl benzo‐15‐crown‐5 exhibited distinctive characteristics of a surfactant and the critical micellar concentration (CMC) of the surfactant was investigated by the pyrene fluorescence probe method. Cholesteryl benzo‐15‐crown‐5 was successfully applied as a good ion transport carrier (Ionophore) to transport various metal ions, e.g. Li+, Na+, La3+, Fe3+ and Co3+, through organic liquid membranes. The transport ability of the cholesteryl benzo‐15‐crown‐5 surfactant for these metal ions was in the order: Co3+ ≥ Li+ > Fe3+ > Na+ > La3+.  相似文献   

2.
Cation fluxes from binary mixtures of either Na+, Cs+ or Sr2+ with other alkali metal cations, alkaline earth metal cations, and Pb2+ through a H2OCHCl3H2O bulk liquid membrane system containing one of several macrocyclic carriers have been determined Nitrate salts were used in all cases. The most selective transport of Na+ over all other cations studied was found with the carrier cryptand [2.2.1]. Selective transport of Na+ relative to Li+, Cs+ and the alkaline earth cations was found with cryptand [2.2.2B] and cryptand [2.2.2D]. The ligands 21-crown-7 and dibenzo-24-crown-8 showed selective transport of Cs+ over the second cation in all cases. Several macrocycles showed selectivity for Sr2+ over the second cation with the macrocycle 1,10-diaza-18-crown-6 showing the highest selectivity for this cation of all ligands studied. Relative fluxes from binary cation mixtures are rationalized in terms of macrocycle cavity size, donor atom type and ring substituents.  相似文献   

3.
Artificial macrocyclic polyethers were synthesized and applied as neutral carriers for ion-selective PVC membrane electrodes, ion-chromatographic packing materials, extractants and adsorbents for ion separation, coating materials for piezoeletrical membrane sensors for organic species, and ion-transport carriers through liquid membranes. Ion-selective electrodes such as those for K+ Na+, UO22+, Cs+, Pb2+, Fe3+, Hg2+ and Ag+ ions based on crown ether-phosphotungstic acid (PW) precipitates and dithio crown ethers respectively were prepared and showed good sensitivity and selectivity. Crown ether-PW precipitates were applied as adsorbents of rare-earth ions and some common heavy-metal ions. Some rare-earth ions were easily extracted with crown ethers, especially 15-crown-5. Poly(stytene/divinyl benzene) cryptand-22 resin was synthesized and applied as a bifunctional stationary phase of ion chromatography to separate bom cations and anions, even some organic carboxylate geometric isomers. Crown ethers such as mono-benzo-15-crown-5 was successfully applied as a coating material on piezoelectric quartz membrane sensors for some organic species. The oscillation frequency of the crown-ether quartz-membrane sensor was sensitive to organic vapours such as amines and alcohols. Upon adsorption of organic species on the crown-ether quartz membrane, the oscillation frequency of the sensor decreased obviously. Special crown ether such as dibenzo-16-crown-5-oxyacetic acid, decyl-cryptand-22 and 1, 4-dihydro-pyridine-18-crown-5 were synthesized and successfully applied as ion-transport carriers (ionophores) for transport of Na+ K+ and Mg2+ ions through liquid membranes.  相似文献   

4.
In this contribution we investigated the ion complexation of Bühl's cryptand, dodeka(ethylene)octamine by quantum chemical methods (B3LYP/LANL2DZp). This cryptand is an isomer of a well‐known Lehn‐type cryptand [TriPip222]. The ion selectivity was determined based on the energetic criteria derived by model reactions starting from solvated metal ions and empty dodeka(ethylene)octamine, and by comparing the M–N bond length in [M ? dodeka(ethylene)octamine]m+ and [M(NH3)6]m+. We calculated that Bühl's cryptand will complex best Na+ followed by Li+ as alkaline cations and Ca2+ followed by Mg2+ as alkaline earth metal ions. Based on this data we conclude that Bühl's cryptand offers a smaller cavity to nest ions than the Lehn‐type [TriPip222].  相似文献   

5.
Artificial ion channels are of increasing interest because of potential applications in biomimetics, for example, for realizing selective ion permeability through the transport and/or exchange of selected ions. However, selective ion transport and/or exchange in the crystalline state is rare, and to the best of our knowledge, such a process has not been successfully combined with changes in the physical properties of a material. Herein, by soaking single crystals of Li2([18]crown‐6)3[Ni(dmit)2]2(H2O)4 ( 1 ) in an aqueous solution containing K+, we succeeded in complete ion exchange of the Li+ ions in 1 with K+ ions in the solution, while maintaining the crystalline state of the material. This ion exchange with K+ was selectively conducted even in mixed solutions containing K+ as well as Na+/Li+. Furthermore, remarkable changes in the physical properties of 1 resulted from the ion exchange. Our finding enables not only the realization of selective ion permeability but also the development of highly sensitive biosensors and futuristic ion exchange agents, for example.  相似文献   

6.
Biological ion channels use the synergistic effects of various strategies to realize highly selective ion sieving. For example, potassium channels use functional groups and angstrom-sized pores to discriminate rival ions and enrich target ions. Inspired by this, we constructed a layered crystal pillared by crown ether that incorporates these strategies to realize high Li+ selectivity. The pillared channels and crown ether have an angstrom-scale size. The crown ether specifically allows the low-barrier transport of Li+. The channels attract and enrich Li+ ions by up to orders of magnitude. As a result, our material sieves Li+ out of various common ions such as Na+, K+, Ca2+, Mg2+ and Al3+. Moreover, by spontaneously enriching Li+ ions, it realizes an effective Li+/Na+ selectivity of 1422 in artificial seawater where the Li+ concentration is merely 25 μM. We expect this work to spark technologies for the extraction of lithium and other dilute metal ions.  相似文献   

7.
Black phosphorus (BP) is a desirable anode material for alkali metal ion storage owing to its high electronic/ionic conductivity and theoretical capacity. In‐depth understanding of the redox reactions between BP and the alkali metal ions is key to reveal the potential and limitations of BP, and thus to guide the design of BP‐based composites for high‐performance alkali metal ion batteries. Comparative studies of the electrochemical reactions of Li+, Na+, and K+ with BP were performed. Ex situ X‐ray absorption near‐edge spectroscopy combined with theoretical calculation reveal the lowest utilization of BP for K+ storage than for Na+ and Li+, which is ascribed to the highest formation energy and the lowest ion diffusion coefficient of the final potassiation product K3P, compared with Li3P and Na3P. As a result, restricting the formation of K3P by limiting the discharge voltage achieves a gravimetric capacity of 1300 mAh g?1 which retains at 600 mAh g?1 after 50 cycles at 0.25 A g?1.  相似文献   

8.
Ladders of relative alkali ion affinities of crown ethers and acyclic analogs were constructed by using the kinetic method. The adducts consisting of two different ethers bound by an alkali metal ion, (M1 + Cat + M2)+, were formed by using fast atom bombardment ionization to desorb the crown ethers and alkali metal ions, then collisionally activated to induce dissociation to (M1 + Cat)+ and (M2 + Cat)+ ions. Based on the relative abundances of the cationized ethers formed, orders of relative alkali ion affinities were assigned. The crown ethers showed higher affinities for specific sizes of metal ions, and this was attributed in part to the optimal spatial fit concept. Size selectivities were more pronounced for the smaller alkali metal ions such as Li+, Na+, and K+ than the larger ions such as Cs+ and Rb+. In general, the cyclic ethers exhibited greater alkali metal ion affinities than the corresponding acyclic analogs, although these effects were less dramatic as the size of the alkali metal ion increased.  相似文献   

9.
Various reusable and sensitive piezoelectric (PZ) quartz crystal membrane sensors with home‐made computer interfaces for signal acquisition and data processing were developed to detect organic/inorganic vapors and organic/inorganic/biologic species in solutions, respectively. Fullerene(C60), fullerene derivatives and artificial macrocyclic polyethers, e.g., crown ethers and cryptands, were synthesized and applied as coating materials on quartz crystals of the PZ crystal sensors. The oscillating frequency of the quartz crystal decreased due to the adsorption of organic or inorganic species onto coating material molecules on the crystal surface. The crown ether‐coated PZ crystal gas detector exhibited high sensitivity with a frequency shift range of 10–340 Hz/(mg/L) for polar organic gases, a short response time (< 2.0 min.), good selectivity, and good reproducibility. The Ag(I)/crptand22 and Ru(III) / crptand22 coated PZ gas detectors were also prepared for nonpolar organic vapors, e.g., alkynes and alkenes. The frequency shifts of the nonpolar PZ sensors were in the order: alkynes > alkenes > alkanes. A Ti(IV)/Cryptand22‐coated PZ crystal sensor was also developed to detect the inorganic air pollutants, e.g., CO and NO2. A piezoelectric gas sensor for both polar/nonpolar organic vapors based on C60‐cryptand22 was also prepared. The cryptand22‐coated PZ gas sensor was also employed as a GC detector for organic molecules. The cryptand22‐coated piezoelectric GC detectors compared well with the commercial thermal conductivity detector (TCD). The interaction between fullerene C60 and organic molecules was studied with a fullerene coated PZ gas detector. A multi‐channel PZ organic gas detector with PCA(Principal Component Analysis) and BPN (Back Propagation Neural) analysis methods was developed. Various liquid piezoelectric crystal sensors based on long‐chain macrocyclic polyethers, e.g., C10H21‐dibenzo‐16‐crown‐5, C18H37‐benzo‐15‐crown‐5, (C17CO)2‐cyptand22 and fullerene derivatives, e.g., C60‐NH‐cryptand22 and dibenzo‐16‐crown‐5‐C60, were also developed as HPLC detectors for metal ions, anions, and various organic compounds in solutions. The sensitive and highly selective PZ bio‐sensors based on enzymes, polyvinylaldehyde, polycinnaldehyde‐C60 and C60‐cryptand22 were developed to detect various biologic species, e.g., proteins, glucose, and urea. A quite sensitive EQCM (Electrochemical Quartz Crystal Micro‐balance) detection system was also developed for detection of trace heavy metal ions.  相似文献   

10.
Fullerence C60‐cryptand 22 was prepared and successfully applied as the electric carrier in the PVC electrode membrane of a bifunctional ion‐selective electrode for cations, e.g., Ag+ ions as well as anions, e.g., I? ions. The bifunctional ion‐selective electrode based on C60‐cryptand 22 can be applied as a Silver (Ag+) ion selective electrode with an internal electrode solution of 10?3 M AgNO3 in water (pH = 6.3), or as an Iodide (I?) ion selective electrode with an acidic internal electrode solution of 10?4 M KI(aq) (pH = 2) in which the cryptand 22 is protonated, and the C60‐cryptand 22 is changed to C60‐Cryptand22–H+ and becomes an anionic electro‐carrier to absorb the I? ion. The Ag+ ion selective electrode based on C60‐cryptand 22 gave a linear response with a near‐Nernstian slope (59.5 mV decade?1) within the concentration range 10?1‐10?3 M Ag+(aq). The Ag+ ion electrode exhibited comparatively good selectivity for silver ions, over other transition‐metal ions, alkali and alkaline earth metal ions. The Ag+ ion selective electrode with good stability and reproducibility was successfully used for the titration of Ag+(aq) with Cl? ions. The Iodide (I?) Ion selective electrode based on protonated C60–cryptand22‐H+ also showed a linear response with a nearly Nernstian slope (58.5 mV decade?1) within 10?1 ‐ 10?3 M I? (aq) and exhibited good selectivity for I? ions and had small selectivity coefficients (10?2–10?3) for most of other anions, e.g., F? , OH?, CH3COO?, SO42?, CO32?, CrO42?, Cr2O72? and PO43? ions.  相似文献   

11.
The selectivity of eight lariat crown ethers in the sym‐dibenzo‐16‐crown‐5 series toward alkali metal ions was studied with electrospray ionization mass spectrometry under different conditions. With the exception of 2g , which is equally selective toward Na+ and Li+, all other lariat crown ethers show the best selectivity toward Li+ in methanol. Factors that influence the selectivity include the water content, counterions, nature of the side arms, and the externally added cations. Iodide gives the best Na+ selectivity with RI > RBr > RCl. Increased water content profoundly increases the Na+ selectivity when the side arm is hydrophilic and the steric hindrance is small. Externally added cations (Cs+ and/or Rb+) enhance the Na+ selectivity by exchanging the smaller Li+ from the cavity.  相似文献   

12.
Abstract

Thermodynamic quantities (log K, ΔH, and ΔS) for the interactions of a carbon-bridged cryptand with Li+, Na+, K+, Ca2+, Sr2+, Ba2+, and Pb2+ were determined at 25° C by calorimetric titration in aqueous solution. The cryptand forms complexes with Na+, Sr2+, Ba2+, and Pb2+ with log K ≤ 2. Complexation was not detected for Li+, K+, and Ca2+. Weak interactions with Li+ and K+ and a log K value of 2.4 for Na+ suggest that the cavity size of the cryptand is close to that of Na+ but too small for K+ and too large for Li+. The carbon-bridged cryptand selectively binds Sr2+ (log K = 3.2) over Ca2+ and Ba2+ by more than one order of magnitude.  相似文献   

13.
Ions are transported across membrane mostly via carrier or channel mechanisms. Herein, a unique class of molecular‐machine‐inspired membrane transporters, termed molecular swings is reported that utilize a previously unexplored swing mechanism for promoting ion transport in a highly efficient manner. In particular, the molecular swing, which carries a 15‐crown‐5 unit as the ion‐binding and transporting unit, exhibits extremely high ion‐transport activities with EC50 values of 46 nm (a channel:lipid molar ratio of 1:4800 or 0.021 mol % relative to lipid) and 110 nm for K+ and Na+ ions, respectively. Remarkably, such ion transport activities remain high in a cholesterol‐rich environment, with EC50 values of 130 (0.045 mol % relative to lipid/cholesterol) and 326 nm for K+ and Na+ ions, respectively.  相似文献   

14.
The synthesis of a new tetrapyrazolic macrocyclic structure with a functionalised arm is described. The complexing properties of this new compound towards alkali metal ions (K+, Na+, Li+) were studied by liquid-liquid extraction and liquid membrane transport processes. The extracted and the transport cation percentage were determined by atomic absorption measurements and UV spectroscopy.  相似文献   

15.
A new ditopic ion‐pair receptor 1 was designed, synthesized, and characterized. Detailed binding studies served to confirm that this receptor binds fluoride and chloride ions (studied as their tetraalkylammonium salts) and forms stable 1:1 complexes in CDCl3. Treatment of the halide‐ion complexes of 1 with Group I and II metal ions (Li+, Na+, K+, Cs+, Mg2+, and Ca2+; studied as their perchlorate salts in CD3CN) revealed unique interactions that were found to depend on both the choice of the added cation and the precomplexed anion. In the case of the fluoride complex [ 1? F]? (preformed as the tetrabutylammonium (TBA+) complex), little evidence of interaction with the K+ ion was seen. In contrast, when this same complex (i.e., [ 1? F]? as the TBA+ salt) was treated with the Li+ or Na+ ions, complete decomplexation of the receptor‐bound fluoride ion was observed. In sharp contrast to what was seen with Li+, Na+, and K+, treating complex [ 1? F]? with the Cs+ ion gave rise to a stable, receptor‐bound ion‐pair complex [Cs ?1? F] that contains the Cs+ ion complexed within the cup‐like cavity of the calix[4]pyrrole, which in turn was stabilized in its cone conformation. Different complexation behavior was observed in the case of the chloride complex [ 1? Cl]?. In this case, no appreciable interaction was observed with Na+ or K+. In addition, treating [ 1? Cl]? with Li+ produces a tightly hydrated dimeric ion‐pair complex [ 1? LiCl(H2O)]2 in which two Li+ ions are bound to the crown moiety of the two receptors. In analogy to what was seen in the case of [ 1? F]?, exposure of [ 1? Cl]? to the Cs+ ion gives rise to an ion‐pair complex [Cs ?1? Cl] in which the cation is bound within the cup of the calix[4]pyrrole. Different complexation modes were also observed when the binding of the fluoride ion was studied by using the tetramethylammonium and tetraethylammonium salts.  相似文献   

16.
Silica-titania gels containing 25, 50 and 75 mol% TiO2 were prepared and the sorption of alkali and alkaline earth metal ions by these materials has been studied. Distribution coefficient values for Cs+ and Sr2+ ions were found to pass through broad maxima as a function of TiO2 content except in the case of Sr under alkaline conditions where there was a continuous increase. Capacity values also increased with TiO2 content and samples containing 50% (for K+ and Cs+), 75% (for Li+ and Na+) and 25%/50% (for Ca2+, Sr2+ and Ba2+) TiO2 exhibited maximum capacities. However, unlike with alkali metals, capacities of a given sorbent for the three alkaline earth ions were almost the same. Large capacities obtained for the latter ions seem to indicate a mineral-forming reaction with 25% and 50% materials. On the other hand, the 25% TiO2 gel seems to sorb Sr at trace level by an ion exchange mechanism. Coupled with its Cs sorption capability, this material may find potential use in large scale decontamination of low level waste solutions.  相似文献   

17.
A ditopic ion‐pair receptor ( 1 ), which has tunable cation‐ and anion‐binding sites, has been synthesized and characterized. Spectroscopic analyses provide support for the conclusion that receptor 1 binds fluoride and chloride anions strongly and forms stable 1:1 complexes ([ 1? F]? and [ 1? Cl]?) with appropriately chosen salts of these anions in acetonitrile. When the anion complexes of 1 were treated with alkali metal ions (Li+, Na+, K+, Cs+, as their perchlorate salts), ion‐dependent interactions were observed that were found to depend on both the choice of added cation and the initially complexed anion. In the case of [ 1? F]?, no appreciable interaction with the K+ ion was seen. On the other hand, when this complex was treated with Li+ or Na+ ions, decomplexation of the bound fluoride anion was observed. In contrast to what was seen with Li+, Na+, K+, treating [ 1?F ]? with Cs+ ions gave rise to a stable, host‐separated ion‐pair complex, [F ?1? Cs], which contains the Cs+ ion bound in the cup‐like portion of the calix[4]pyrrole. Different complexation behavior was seen in the case of the chloride complex, [ 1? Cl]?. Here, no appreciable interaction was observed with Na+ or K+. In contrast, treating with Li+ produces a tight ion‐pair complex, [ 1? Li ? Cl], in which the cation is bound to the crown moiety. In analogy to what was seen for [ 1? F]?, treatment of [ 1? Cl]? with Cs+ ions gives rise to a host‐separated ion‐pair complex, [Cl ?1? Cs], in which the cation is bound to the cup of the calix[4]pyrrole. As inferred from liposomal model membrane transport studies, system 1 can act as an effective carrier for several chloride anion salts of Group 1 cations, operating through both symport (chloride+cation co‐transport) and antiport (nitrate‐for‐chloride exchange) mechanisms. This transport behavior stands in contrast to what is seen for simple octamethylcalix[4]pyrrole, which acts as an effective carrier for cesium chloride but does not operates through a nitrate‐for‐chloride anion exchange mechanism.  相似文献   

18.
Indirect ultraviolet detection was conducted in ultraviolet‐absorption‐agent‐added mobile phase to complete the detection of the absence of ultraviolet absorption functional group in analytes. Compared with precolumn derivatization or postcolumn derivatization, this method can be widely used, has the advantages of simple operation and good linear relationship. Chromatographic separation of Li+, Na+, K+, and NH4+ was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid/organic solvent as the mobile phase, in which imidazolium ionic liquids acted as ultraviolet absorption reagent and eluting agent. The retention behaviors of four kinds of cations are discussed, and the mechanism of separation and detection are described. The main factors influencing the separation and detection were the background ultraviolet absorption reagent and the concentration of hydrogen ion in the ion chromatography‐indirect ultraviolet detection. The successful separation and detection of Li+, Na+, K+, and NH4+ within 13 min was achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.02, 0.11, 0.30, and 0.06 mg/L, respectively. A new separation and analysis method of alkali metal ions and ammonium by ion chromatography with indirect ultraviolet detection method was developed, and the application range of ionic liquid was expanded.  相似文献   

19.
The predominant participation of anions of sorbed electrolytes in electrical charge transfer in polymers was demonstrated based on measurement of the transport numbers of Li+, Na+, K+, Rb+, Cs+, Tl+, and NO3 ions through homogeneous polymer membranes containing dibenzo-18-crown-6 or dibenzo-24-crown-8. The coordination reaction of the cations with the crown ethers in the polymer phase is the cause of the decrease in the proportion of cations in electrical charge transfer.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 2, pp. 310–314, February, 1990.  相似文献   

20.
Some ion-formation processes during fast atom bombardment (FAB) are discussed, especially the possibility of reactions in the gas phase. Divided (two halves) FAB probe tips were used for introducing two different samples into the source at the same time. Our results showed [M + A]+ ions (where M = crown ethers and A = alkali metal ions), can be produced, at least in part, in the gas phase when crown ethers and sources of alkali metal ion are placed on two halves of the FAB probe tip. The extent of this ion formation depends on the volatility of the crown ether and on steric factors. Cluster ions such as (M + LiCl)Li+, (2M + LiCl)Li+, [2M + K]+ and [2M + Na]+ are also observed to form in the gas phase. Unimolecular decompositions contribute to some ions detected in FAB. When the alkali ion salt and the crown ether are mixed together the probability of [M + A]+ ion formation increases significantly, regardless of the volatility of the crown ether.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号