首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The thermal decomposition of Co(II), Ni(II) and Cu(II) complexes has been studied using thermogravimetry (TG) and differential TG (DTG). The complexes have been characterized by IR spectroscopy. The results reveal that the decomposition of these complexes is accompanied by the formation of metal acetate as an intermediate fragments. On the basis of the applicability of a non-isothermal kinetic equations, it was demonstrated that the stability of the complexes follows the order Co(II)>Cu(II)>Ni(II). These stably correspond to the strength of chelation between the metal ions and the primary and secondary ligands. A possible mechanism of the thermal decomposition of the complexes is suggested.  相似文献   

2.
Studies of the complexes of pyridinecarboxylic acids with divalent metal ions as a function of the position of the carboxyl groups were extended. The thermal properties of the complexes of quinoline acid (pyridine-2,3-dicarboxylic acid) with several divalent metal ions were determined by thermogravimetry (TG) and differential thermal analysis (DTA). A correlation between these compounds and others obtained by reaction between the studied metal ions with similar acids (lutidinic acid (pyridine-2,4-dicarboxylic acid) and isocinchomeronic acid (pyridine-2,5-di-carboxylic acid) is discussed in terms of the position of the carboxyl group far from the aza group. The thermal stability of the metal complexes is in the order Mn(II) > Fe(II) > Zn(II) ? Co(II) > Ni(II) > Cu(II).  相似文献   

3.
Complexes of general formula M[H2B(Me2pz)2]2, [where M = Co(II), Ni(II), Cu(II), and Zn(II)] are characterized by thermal analysis and complementary techniques. Mixtures of boron and metal oxides are found as final residues. Relative thermal stability (Ni > Cu > Co = Zn) and thermal behaviour are discussed. Melting and sublimation data are compared with those referred to in the literature.  相似文献   

4.
UO2(VI), Sn(IV), Th(IV) and Li(I) complexes of 4-azomalononitrile antipyrine (L) have been isolated and characterized based on IR spectra, 1H NMR, elemental analyses, molar conductance and thermal analysis (DTA/TG). The study revealed that the ligand behaves as a neutral bidentate one and coordination takes place via the carbonyl atom of pyrazolone ring >C=O and the azomethine nitrogen >C=N. The thermal stability of the metal complexes were investigated by thermogravimetry (TG), differential thermal analysis (DTA) techniques and infrared spectra, and correlated to their structure. The thermal study revealed that Th(IV) complexes show lower thermal stability than both UO2(VI) and Sn(IV) complexes.  相似文献   

5.
The thermal behaviour of Mg(II), Zn(II) and Co(II) compounds of ciprofloxacin was studied by thermogravimetry (TG) and differential thermal analysis (DTA) in order to determine or to confirm some structural characteristics of substances. The complexes decompose in two steps: dehydration and pyrolytic decomposition of the anhydrous complexes to form metal oxide or metal fluoride. The dehydration process of one magnesium(II) compound takes place in two steps suggesting a marked difference in the bonding of water molecules. The different bonding mode of the ciprofloxacin molecules in both magnesium compounds leads to different residues of the thermal decompositions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Atenolol dithiocarbamate (ADTC) and its complexes with Cu(II), Co(II), Ni(II), Zn(II), and Cd(II) have been synthesized. These newly synthesized products have been characterized by elemental analyses (C, H, N, and S), thermal (thermogravimetry (TG) and differential thermal analyses (DTA)) as well as by spectral (UV, IR, and NMR (1H)) studies. The stability constants (β) of metal complexes of ADTC have been determined by UV-Vis data in solutions in DMSO. The antimicrobial activities of the metal complexes have been screened in vitro against ten bacteria. The text was submitted by the authors in English.  相似文献   

7.
The thermal properties of nickel(II) and zinc(II) complexes of saccharin (sacc) (o-benzoic sulphimide) have been studied and compared both with those of cobalt(II) and copper(II) previously studied and with those of ternary complexes of nickel(II) and zinc(II) having both saccharin and pyridine as ligands. The thermal behaviour is discussed in terms of the interaction between metal and ligands, interaction studied by IR spectroscopy, and by reflectance spectroscopy.The classical thermal stability scale Co(II) > Ni(II) > Cu(II) > Zn(II) is always obtained.  相似文献   

8.
The thermal dehydrations of formate dihydrates of Mg(II), Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) were studied by means of thermogravimetry, differential thermal analysis and differential scanning calorimetry in air.The reaction orders of dehydration obtained by the dynamic and the static methods were found to be 2/3 for all the salts examined, which indicated that the rate of dehydration was controlled by a chemical process at a phase boundary. This was confirmed by microscopic observation.The values of activation energy, frequency factor and the enthalpy change of dehydration for all salts examined, were 21–30 kcal mole?1, 1010-1012 sec?1 and 28–31 kcal mole?1, respectively.The temperature at which the dehydration occurred was regarded as a measure of the strength of the metalOH2 bond, and this temperature increased with increasing the reciprocal of the radius of the metallic ion.  相似文献   

9.
The thermal properties of the Cu(II), Ni(II) and Co(II) complexes of iminodiacetic acid (H2IMDA) were determined using TG, DTG and DSC techniques. The complexes, of general formula, MIMDA-2H2O evolved water of hydration from 50 to 150°C which was followed by the decomposition of the anhydrous complex in the 250 to 400°C temperature range. The thermal stability, as determined by procedural decomposition temperatures, was: Ni(II) >Co(II) >Cu(II). The thermal stability is discussed in terms of IR spectra, ΔH, and ΔS, as well as thermal data.  相似文献   

10.
The triethanolamine complexes, [M(tea)2]sq·nH2O, (n=2 for Co(II), n=0 for Ni(II), Cu(II) and n=1 for Cd(II), tea=triethanolamine, sq2−=squarate), have been synthesized and characterized by elemental analyses, magnetic susceptibility and conductivity measurements, UV-Vis and IR spectra, and thermal analyses techniques (TG, DTG and DTA). The Co(II), Ni(II) and Cu(II) complexes possess octahedral geometry, while the Cd(II) complex is monocapped trigonal prismatic geometry. Dianionic squarate behaves as a counter ion in the complexes. The thermal decomposition of these complexes takes place in three stages: (i) dehydration, (ii) release of the tea ligands and (iii) burning of organic residue. On the basis of the first DTGmax of the decomposition, the thermal stability of the anhydrous complexes follows the order: Ni(II), 289°C>Co(II), 230°C>Cu(II), 226°C>Cu(II), 170°C in static air atmosphere. The final decomposition products — the respective metal oxides — were identified by FTIR spectroscopy.  相似文献   

11.
The thermal behaviours of the Ti(II), Mn(II), Fe(II), Ni(II), Cu(II) and Zn(II) complexes of triethanolamine were studied by means of thermogravimetry, differential thermogravimetry, differential thermal analysis infrared spectrophotometry and elemental analysis. The sequence of thermal stability of the metal complexes, determined by using the initial decomposition temperature, was found to be Ti(II)?Mn(II)>Fe(II)>Ni(II)>Zn(II)>Cu(II). Some of the kinetic parameters, such as the activation energy and order of reaction for the initial decomposition reaction, were calculated and the relationship between the thermal stability and the chemical structure of the complexes is discussed.  相似文献   

12.
New Co(II), Ni(II), and Cu(II) complexes were synthesized with the Schiff base ligand obtained by the condensation of sulfathiazole with salicylaldehyde. Their characterization was performed by elemental analysis, molar conductance, spectroscopic techniques (IR, diffuse reflectance and UV–Vis–NIR), magnetic moments, thermal analysis, and calorimetry (thermogravimetry/derivative thermogravimetry/differential scanning calorimetry), while their morphological and crystal systems were explained on the basis of powder X-ray diffraction results. The IR data indicated that the Schiff base ligand is tridentate coordinated to the metallic ion with two N atoms from azomethine group and thiazole ring and one O atom from phenolic group. The composition of the complexes was found to be of the [ML2]∙nH2O (M = Co, n = 1.5 (1); M = Ni, n = 1 (2); M = Cu, n = 4.5 (3)) type, having an octahedral geometry for the Co(II) and Ni(II) complexes and a tetragonally distorted octahedral geometry for the Cu(II) complex. The presence of lattice water molecules was confirmed by thermal analysis. XRD analysis evidenced the polycrystalline nature of the powders, with a monoclinic structure. The unit cell volume of the complexes was found to increase in the order of (2) < (1) < (3). SEM evidenced hard agglomerates with micrometric-range sizes for all the investigated samples (ligand and complexes). EDS analysis showed that the N:S and N:M atomic ratios were close to the theoretical ones (1.5 and 6.0, respectively). The geometric and electronic structures of the Schiff base ligand 4-((2-hydroxybenzylidene) amino)-N-(thiazol-2-yl) benzenesulfonamide (HL) was computationally investigated by the density functional theory (DFT) method. The predictive molecular properties of the chemical reactivity of the HL and Cu(II) complex were determined by a DFT calculation. The Schiff base and its metal complexes were tested against some bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis). The results indicated that the antibacterial activity of all metal complexes is better than that of the Schiff base.  相似文献   

13.
The cobalt, nickel, copper and zinc atoms in bis(1,10-phenanthroline)bis(salicylato-O)metal(II) monomeric octahedral complexes [M(Hsal)2(phen)2nH2O, (M: Co(II), n=1; Cu(II), n=1.5 and Ni(II), Zn(II), n=2) are coordinated by the salicylato monoanion (Hsal) through the carboxyl oxygen in a monodentate fashion and by the 1,10-phenanthroline (phen) molecule through the two amine nitrogen atoms in a bidentate chelating manner. On the basis of the DTGmax, the thermal stability of the hydrated complexes follows order: Ni(II) (149°C)>Co(II) (134°C)>Zn(II) (132°C)>Cu(II) (68°C) in static air atmosphere. In the second stage, the pyrolysis of the anhydrous complexes takes place. The third stage of decomposition is associated with a strong exothermic oxidation process (DTA curves: 410, 453, 500 and 450°C for the Co(II), Ni(II), Cu(II) and Zn(II) complexes, respectively). The final decomposition products, namely CoO, NiO, CuO and ZnO, were identified by IR spectroscopy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The thermal properties of the Ni(II), Co(II) and Cu(II) complexes of glycine were determined using TG, DTG and DSC techniques. The complexes, MGly2·nH2O (n = 1, 2), dehydrated in the temperature range of 75 to 200°C, followed by the decomposition of the anhydrous compounds in the temperature range of 200 to 400°C. The thermal stability of the complexes, as determined by procedural decomposition temperatures, was: Ni(II) >Co(II) >Cu(II).  相似文献   

15.
The influence of the concentration of a complexing ion on the sorption recovery of nickel, cobalt, mercury, and lead ions from aqueous solutions by a phosphorus-containing polymeric polybutadiene-based sorbent was studied. Sorption isotherms of the studied metal ions were processed by the Langmuir and Freindlich models. The affinity of metal ions to the functional groups of a sorbent and the stability of complexes were established to decrease in the order Hg(II) > Pb(II) > Co(II) > Ni(II).  相似文献   

16.
The thermal decomposition kinetics of sterically hindered salen type ligand (L) and its metal complexes [M=Co(II), Ni(II), Cu(II)] were investigated by thermogravimetric analysis. A direct insertion probe-mass spectrometer (DIP-MS) was used for the characterization of metal complexes of L and all fragmentations and stable ions were characterized. The thermogravimetry and differential thermogravimetry (TG-DTG) plots of salen type salicylaldimine ligand and complexes showed a single step. The kinetic analysis of thermogravimetric data was performed by using the invariant kinetic parameter method (IKP). The values of the invariant activation energy, E inv and the invariant pre-exponential factor, A inv, were calculated by using Coats-Redfern (CR) method. The thermal stabilities and activation energies of metal complexes of sterically hindered salen type ligand (L) were found as Co(II)>Cu(II)>Ni(II)>L and E Cu>E Ni>E Co>L. Also, the probabilities of decomposition functions were investigated. The diffusion functions (D n) are most probable for the thermal decomposition of all complexes.  相似文献   

17.
The dehydration process of Co(II), Cu(II) and Zn(II) methanesulfonates was studied by thermogravimetry/derivative thermogravimetry (TG/DTG) and differential scanning calorimetry (DSC) techniques in dynamic N2 atmosphere. The TG/DTG curves show that all of them contain four crystallization water molecules, which are lost in two steps. The peak temperature and dehydration enthalpies ΔH were measured from DSC curves for each compound. The effect of procedural variables on the TG and DSC curves was investigated. In this work, the procedural variables included heating rate, Al pan state (unsealed and sealed) and sample mass.  相似文献   

18.
The new orotic acid complexes, [MCl2(H2O)3(H3Or)], M=Co(II), Ni(II) and [CuCl2(H2O)(H3Or)3] · H2O, were synthesized and characterized by elemental analysis, magnetic susceptibility, spectral (Diffuse reflectance UV–Vis and FTIR) methods, and simultaneous thermal analysis (TG, DTG and DTA) techniques. Physical measurements indicate that the neutral orotic acid ligands are bonded to metal ions through the carbonyl groups. Two thermal processes of the complexes can occur: dehydration and pyrolytic decomposition. On the basis of the DTGmax, the thermal stability of the complexes follows the order: Co(II) (122 °C) > Cu(II) (77 °C) > Ni(II) (66 °C).  相似文献   

19.
Abstract

Potentiometric titration with ion-selective electrodes was applied to determine characteristic parameters like the degree of complexation and the approximate molecular weight of humic acids from theoretical considerations and conditional stability constants for the complexes of Cu(II) and Cd(II) with humic acids obtained from sources such as garden soil, peat prepared by decomposing water hyacinth in soil and humified water hyacinth. Double-reciprocal and Scatchard plots were constructed to determine the conditional stability constants of the complexes formed. Cu(II) was found to have more affinity for the humic acids than Cd(II) and the stability of the metal complexes in aqueous medium was found to increase with increasing pH. The order of stability of the complexes was M-HA (soil)>M-HA (peat)>M-HA (humified water hyacinth), where M and HA represent metal and humic acids, respectively.  相似文献   

20.
The thermal behaviour of the entitled nickel(II) and copper(II) complexes of ¯4-acetylamino-2-hydroxy-5-methyl azobenzene has been studied by means of differential thermal analysis (DTA), thermogravimetry (TG), X-ray powder diffraction, IR and electrical conductivity. A light has been thrown on the nature of interaction of the solvents of crystallization with the host complex. Some of the kinetic parameters are calculated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号