首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A method for the formation of Au nanocrystal (nc) arrays embedded in an ultrathin SiO2 layer in one vacuum cycle is proposed. The method is based on the co-deposition in vacuum of ∼1 nm thick uniform Si-Au amorphous layer at a specific composition ratio by Pulsed Laser Deposition on the pre-oxidized Si(1 0 0) substrate, followed by its oxidation in the glow discharge oxygen plasma at room temperature, resulting in the precipitation of Au ncs at the bottom interface and/or at the surface of the forming SiO2 layer. The capping SiO2 layer is formed by the glow discharge plasma oxidation of further deposited ultrathin Si layer. Au ncs 2-5 nm in size and with the separation of ∼3-20 nm from each other segregate during the oxidation of Au-Si mixture as evidenced by transmission electron microscopy (TEM). The evolution of Au and Si chemical state upon each step of the SiO2:nc-Au nanocomposite structure formation is monitored in situ by X-ray photoelectron spectroscopy (XPS). The metrology of nanocomposite SiO2:nc-Au structures describing the space distribution of Au ncs as a function of Au/Si ratio is presented.  相似文献   

2.
SiOx nanowire bunches were fabricated on a SiNx film with Au catalytic metal in the presence of an Ar flow of 50 sccm at 1150 °C. The resulting samples were characterized by field-emission scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. A SiNx film serves as a barrier to the diffusion of Si atoms from the Si substrate to the catalytic Au metal, where a substrate is a Si source material for SiOx nanowire (NW) growth. Using this process, we could temporally control the initial growth step of SiOx NWs and easily grow the NW bunch.  相似文献   

3.
Mechanical relaxation behavior in ultrathin polystyrene (PS) films supported on silicon oxide (SiOx) and gold (Au) substrates has been studied by dynamic viscoelastic measurement. Based on the method, effects of free surface and substrate interface on the segmental dynamics were discussed. In the case of thin PS films with a thickness of approximately 200 nm, αa-relaxation process corresponding to the segmental motion did not show any deviation from the bulk behavior. In contrast, for the films thinner than about 50 nm, the relaxation time distribution for the αa-process became broader, probably due to a mobility gradient in the surface and interfacial regions. When we sandwiched an ultrathin PS film between SiOx layers, another relaxation process, in addition to the original αa-process, appeared at a higher temperature side that we assigned to the interfacial αa-relaxation process. However, this was never seen for an ultrathin PS film between Au layers, implying that restriction from the substrate interface might be weak in this case.  相似文献   

4.
The nanometer-scale selective growth of Si islands on Si(0 0 1) windows in ultrathin SiO2 films are studied using the kinetic Monte Carlo simulation. The growth of Si islands is reproduced in simulation where we assume that the migration barrier energy for Si adatom on SiO2 film is far lower than that on the Si surface at the window.  相似文献   

5.
Au/SiO2 nanocomposite films were prepared on Si wafers by cosputtering of SiO2 and gold wires. Au/Si atomic ratios in Au/SiO2 nanocomposite films were varied from 0.53 to 0.92 by controlling the length of gold wire to study the evolution of the crystallization of gold, the size of Au/SiO2 nanocomposite particles, and the optical properties of as-deposited Au/SiO2 nanocomposite films. An X-ray photoelectron spectroscopy reveals that Au exists as a metallic phase in the bulk of SiO2 matrix. Dome-shaped Au/SiO2 nanocomposite particles and both Au (1 1 1) and (2 0 0) planes were observed in a field-emission scanning electron microscopy and X-ray diffraction studies respectively. With an ultraviolet-visible, absorption peaks of Au/SiO2 nanocomposite films were observed at 525 nm.  相似文献   

6.
We present IR spectroscopic ellipsometry (IRSE) measurements of electrochemically grafted organic ultrathin films down to monolayer thickness. The formation of organic layers of 4-methoxybenzene (anisole) on TiO2, Au, and Si(111) surfaces was confirmed from observation of the respective absorption bands in the ellipsometric spectra. We discuss the orientation of molecules in a thin film on an Au substrate and in a thick film grafted on a TiO2 substrate. The appearance of silicon oxide related bands in the IRSE spectra shows that oxidation is a side reaction of the electrochemical grafting on Si substrates. These results demonstrate the potential of IRSE application in studies of interfacial structures and thin film engineering. PACS 68.35.Ja; 82.45.Wx; 82.45.Jn  相似文献   

7.
SiO2 nanowires gain scientific and technological interest in application fields ranging from nano-electronics, optics and photonics to bio-sensing. Furthermore, the SiO2 nanowires chemical and physical properties, and so their performances in devices, can be enhanced if decorated by metal nanoparticles (such Au) due to local plasmonic effects.In the present paper, we propose a simple, low-cost and high-throughput three-steps methodology for the mass-production of Au nanoparticles coated SiO2 nanowires. It is based on (1) production of the SiO2 nanowires on Si surface by solid state reaction of an Au film with the Si substrate at high temperature; (2) sputtering deposition of Au on the SiO2 nanowires to obtain the nanowires coated by an Au film; and (3) furnace annealing processes to induce the Au film dewetting on the SiO2 nanowires surface. Using scanning electron microscopy analyses, we followed the change of the Au nanoparticles mean versus the annealing time extracting values for the characteristic activation energy of the dewetting process of the Au film on the SiO2 nanowires surface. Such a study can allow the tuning of the nanowires/nanoparticles sizes for desired technological applications.  相似文献   

8.
单层SiO2物理膜与化学膜激光损伤机理的对比研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用离子束溅射沉积技术和溶胶-凝胶技术在K9基片上镀制了厚度相近的SiO2单层介质膜,用表面热透镜技术对两类膜层分别进行了热吸收及实时动态热畸变实验测试,结合散射光阈值测试及实验前后膜层的显微观测,对相同基底、相同膜层材料而采用不同方法镀制的光学膜层,发现化学膜的强激光损伤阈值远高于相应物理膜;从热力学响应及膜层特性差异的角度揭示了化学膜层的强激光损伤阈值远高于相应物理膜层的微观机理,即物理膜具有高吸收下的致密膜层快传导的基底热冲击效应,而化学膜则有低吸收下的疏松空隙填充慢传导的延缓效应,大量的实验数据及现象都证实了这一结论. 关键词: 强激光辐照损伤 损伤形貌 热冲击 热吸收  相似文献   

9.
Lead free Ba0.92Ca0.08Ti0.95Zr0.05O3 (BCZT) thin films were deposited on Pt/Ti/SiO2/Si and LaNiO3(LNO)/Pt/Ti/SiO2/Si substrates by a sol–gel processing technique, respectively. The effects of substrate on structure, dielectric and piezoelectric properties were investigated in detail. The BCZT thin films deposited on LNO/Pt/Ti/SiO2/Si substrates exhibit (100) orientation, larger grain size and higher dielectric tunability (64%). The BCZT thin films deposited on Pt/Ti/SiO2/Si exhibit (110) orientation, higher Curie temperature (75 °C), better piezoelectric property (d33 of 50 pm/V) and lower dielectric loss (0.02). The differences in dielectric and piezoelectric properties in the two kinds of oriented BCZT films should be attributed to the difference of structure, in-plane stress and polarization rotation in orientation engineered BCZT films.  相似文献   

10.
We designed and fabricated III–V compound semiconductor two-dimensional photonic crystal (PhC) thin film slabs with quantum dots (QDs) inside formed on Si substrates for highly integrated silicon photonic circuits with built-in nanolasers. Defect-shifted L3 type PhC nanocavities formed in GaAs thin films embedding 1.3 μm-emitting InAs QDs layer-transferred onto Si substrates were investigated. Quality factors <1000 for the PhC nanocavities on SiO2 were enhanced up to ∼8000 by removing SiO2 to form air-bridge structures, resulting in room temperature, continuous wave lasing.  相似文献   

11.
Amorphous silicon oxide (SiOx) nanowires were directly grown by thermal processing of Si substrates. Au and Pd–Au thin films with thicknesses of 3 nm deposited on Si (0 0 1) substrates were used as catalysts for the growth of nanowires. High-yield synthesis of SiOx nanowires was achieved by a simple heating process (1000–1150 °C) in an Ar ambient atmosphere without introducing any additional Si source materials. The as-synthesized products were characterized by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy measurements. The SiOx nanowires with lengths of a few and tens of micrometers had an amorphous crystal structure. The solid–liquid–solid model of nanowire formation was shown to be valid.  相似文献   

12.
Bimetallic PdAu nanoparticles on SiO2 substrate were produced by a sequential room-temperature sputtering deposition method. By the atomic force microscopy technique we studied the nanoparticles self-organization mechanisms in various conditions. First, Pd nucleation and growth proceeds at the substrate defects and the Pd nanoparticles density increase rapidly. During the second sputtering deposition, Au atoms adsorb on the SiO2 and diffuse toward Pd nanoparticles without forming new nuclei. The Au atoms are trapped by the preformed Pd nanoparticles, forming PdAu bimetallic nanoparticles which size increases. Furthermore, fixing the amount of deposited Pd and increasing the amount of deposited Au, we analyzed the evolution of the PdAu film surface morphology: we observe that the PdAu grows initially as three-dimensional islands; then the PdAu film morphology evolves from compact three-dimensional islands to partially coalesced worm-like structures, followed by a percolation morphology and finally to a continuous and rough film. The application of the interrupted coalescence model allowed us to evaluate the critical mean island diameter R c ≈ 2.8 nm for the partial coalescence process. The application of the dynamic scaling theory of growing interfaces allowed us to evaluate the dynamic growth exponent β = 0.21 ± 0.01 from the evolution of the film surface roughness. Finally, fixing the amount of deposited Pd and Au we studied the self-organization mechanism of the PdAu nanoparticles induced by thermal processes performed in the 973–1173 K temperature range. The observed kinetic growth mechanism is consistent with a surface diffusion-limited ripening of the nanoparticles with a temperature-dependent growth exponent. The dependence of the growth exponent on the temperature is supposed to be linked to the variation with the temperature of the characteristics of the PdAu alloy. The activation energy for the surface diffusion process was evaluated in 0.54 ± 0.03 eV.  相似文献   

13.
Undoped lead zirconate titanate (PZT) and Nb doped lead zirconate titanate (PNZT) films formed on an Ir/Ti/SiO2/Si substrate using an RF magnetron sputtering method were studied in detail. Films of about 3–4 μm thickness were deposited at a substrate temperature of 525 °C. X-ray diffraction measurement (XRD) shows that the obtained PZT and PNZT films are both strongly uniaxially oriented in the (100) direction of the perovskite structure, and TEM observation shows that the films have columnar structures. The addition of Nb results in changes of film electrical characteristics, particularly dielectric constant and hysteresis characteristics. Sputtered PNZT films (Nb 13 at.%) formed on silicon diaphragm structures generate 2 times more deflections than undoped PZT film formed on the same structure, thus demonstrating a superior piezoelectric performance. A sputtering method to directly form a PNZT film with high piezoelectric constant on a substrate at low temperature via electrodes finds a wide potential use in MEMS applications.  相似文献   

14.
Ion beam sputter deposition (IBSD) is an established physical vapour deposition technique that offers the opportunity to tailor the properties of film-forming particles and, consequently, film properties. This is because of two reasons: (i) ion generation and acceleration (ion source), sputtering (target) and film deposition (substrate) are locally separated. (ii) The angular and energy distribution of sputtered target atoms and scattered primary particles depend on ion incidence angle, ion energy, and ion species. Ion beam sputtering of a Si target in a reactive oxygen atmosphere was used to grow SiO2 films on silicon substrates. The sputtering geometry, ion energy and ion species were varied systematically and their influence on film properties was investigated. The SiO2 films are amorphous. The growth rate increases with increasing ion energy and ion incidence angle. Thickness, index of refraction, stoichiometry, mass density and surface roughness show a strong correlation with the sputtering geometry. A considerable amount of primary inert gas particles is found in the deposited films. The primary ion species also has an impact on the film properties, whereas the influence of the ion energy is rather small.  相似文献   

15.
The magnetic and structural properties of epitaxial Fe films grown on Si(1 1 1) are investigated by polarized neutron reflectometry (PNR) at room temperature. The influence of different types of interfaces, Fe/Si, Fe/FeSi2 and Au/Fe on the magnetic properties of Fe films deposited by molecular beam epitaxy onto Si(1 1 1) are characterized. We observe a drastic reduction of the magnetic moment in the entire Fe film deposited directly on the silicon substrate essentially due to strong Si interdiffusion throughout the whole Fe layer thickness. The use of a silicide FeSi2 template layer stops the interdiffusion and the value of the magnetic moment of the deposited Fe layer is close to its bulk value. We also evidence the asymmetric nature of the interfaces, Si/Fe and Fe/Si interfaces are magnetically very different. Finally, we show that the use of Au leads to an enhancement of the magnetization at the interface.  相似文献   

16.
The mass transport of Au ultrathin film on a semiconductor MoS2 was investigated by atomic force microscopy (AFM) and scanning Auger microscopy (SAM). The surface electromigration of the Au film was found when a dc current was passed through the MoS2 substrate. The Au ultrathin film on MoS2 grew in a typical Volmer–Weber (V–W) growth mode, The AFM measurements indicated that the distribution of the Au islands exhibited clearly a preferential lateral spread towards the cathode, that is, the surface electromigration took place. The direction of the surface electromigration on MoS2 is opposite to that of the Au electromigration on Si.  相似文献   

17.
Au films deposited on Si substrates have been sputtered by 20 and 100 keV Ar bombardment, respectively. Bombardment-induced intermixing of Au and Si was observed at film thicknesses considerably larger than the projectile range. Due to radiation-enhanced diffusion, the partial sputtering yield of Au from Si-Au alloys decreases with increasing fluence. Complete removal of Au from Si is impossible if Ar ions are used for sputtering.  相似文献   

18.
In this paper we investigate the formations and morphological stabilities of Co-silicide fihns using 1-8-nm thick Co layers sputter-deposited on silicon (100) substrates. These ultrathin Co-silicide films are formed via solid-state reaction of the deposited Co films with Si substrate at annealing temperatures from 450 ℃ to 850 ℃. For a Co layer with a thickness no larger than i nm, epitaxially aligned CoSi2 films readily grow on silicon (100) substrate and exhibit good morphological stabilities up to 600 ℃. For a Co layer thicker than 1 nm, polycrystalline CoSi and CoSi2 films are observed. The critical thickness below which epitaxially aligned CoSi2 film prevails is smaller than the reported critical thickness of the Ni layer for epitaxial alignment of NiSi2 on silicon (100) substrate. The larger lattice mismatch between the CoSi2 film and the silicon substrate is the root cause for the smaller critical thickness of the Co layer.  相似文献   

19.
We have experimentally evaluated attenuation lengths (AL) of photoelectrons traveling in compact and micro and mesoporous (~ 45% voids) SiO2 thin films with high (8.2–13.2 keV) kinetic energies. The films were grown on polished Si(100) wafers. ALs were deduced from the intensity ratio of the Si 1s signal from the SiO2 film and Si substrate using the two-peaks overlayer method. We obtain ALs of 15–22 nm and 23–32 nm for the compact and porous SiO2 films for the range of kinetic energies considered. The observed AL values follow a power law dependence on the kinetic energy of the electrons where the exponent takes the values 0.81 ± 0.13 and 0.72 ± 0.12 for compact and porous materials, respectively.  相似文献   

20.
Results of the investigation into the interface formation during the deposition of the films based on aziridinylphenylpyrrolofullerene (APP-C60) up to 8 nm thick on the surface of the oxidized silicon substrate are presented. The procedure of detecting reflection of testing low-energy electron beam from the surface implemented in the total current spectroscopy mode with a change in the incident electron energy from 0 to 25 eV is used. The structure of maxima in the total current spectra induced by the APP-C60 deposited film is established, and the character of interrelation of these maxima with π* and σ* energy bands in the studied materials is determined. It is revealed due to analyzing the variation in intensities of the total current spectra of the deposited APP-C60 film and the (SiO2)n-Si substrate that the APP-C60 film is formed at the early deposition stage with the coating thickness thinner than one monolayer without the formation of the intermediate modified organic layer. As the APP-C60/(SiO2)n-Si interface is formed, the work function of the surface increases by 0.7 eV, which corresponds to the transfer of the electron density from substrate (SiO2)n-Si toward the film APP-C60. The optical absorption spectra of the APP-C60 films are measured and compared with the spectra of films of unsubstituted C60.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号