首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New ternary semi interpenetrating polymer networks (semi‐IPNs) systems containing acrylamide (AAm), 1‐vinylimidazole (VI) and poly (ethylene glycol) (PEG) have been prepared. AAm/VI hydrogels and semi‐IPN's, poly (AAm/VI/PEG) with 0.25, 0.50, 0.75 and 1.00 g of PEG (per 1.00 g AAm) were prepared by free radical solution polymerization in aqueous solution of AAm with VI as comonomer and a multifunctional crosslinker such as 1,4 butanediol dimethacrylate (BDMA). Swelling experiments were performed in water at 25°C, gravimetrically. The influence of VI and PEG content in hydrogels were examined. AAm/VI and AAm/VI/PEG hydrogels showed large extents of swelling in aqueous media, the swelling being highly dependent on the chemical composition of the hydrogels. Percentage swelling ratio of AAm/VI hydrogels and AAm/VI/PEG hydrogels was shown as 650–4167%. The values of equilibrium water content (EWC) of the hydrogels are between 0.8990 and 0.9750. Diffusion behavior was investigated. Water diffusion into hydrogels was found to be non‐Fickian in character. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Temperature-sensitive ionic hydrogels based on N-t-butylacrylamide (TBA), acrylamide (AAm), 2-acrylamido-2-methylpropane sulfonic acid sodium salt (AMPS) and N,N-methylenebis(acrylamide) (BAAm) monomers were prepared. The molar ratio of TBA to the monomers AAm and AMPS was fixed at 60/40, while the AMPS content of the hydrogels was varied. The elastic modulus of the hydrogels was in the range of 347-447 Pa, much lower than the modulus of PAAm or poly(N-isopropylacrylamide) hydrogels due to the reduced crosslinking efficiency of BAAm in TBA/AAm copolymerization. The hydrogels exhibited swelling-deswelling transition in water depending on the temperature. Increasing ionic group (AMPS) content resulted in shifting of the transition temperature interval in which the deswelling takes place. The higher the ionic group content, the broader the temperature interval at the phase transition. Ionic hydrogels exhibited first-order reentrant conformational transitions in ethanol-water and in dimethylsulfoxide (DMSO)-water mixtures. The higher the ionic group content of the hydrogels the narrower the ethanol (or DMSO) range in which the reentrant phenomena occur. By taking into account the difference of the solvent mixture composition inside and outside the gel, the equilibrium swelling theory provided a satisfactory agreement to the experimental swelling data of the hydrogels immersed in the solvent mixtures.  相似文献   

3.
In this work, we report a series of poly(itaconic acid‐co‐acrylic acid‐co‐acrylamide) (poly(IA‐co‐AAc‐co‐AAm)) hydrogels via frontal polymerization (FP). FP starts on the top of the reaction mixture with aid of heating provided from soldering iron gun. Once polymerization initiated, no further energy is required to complete the process. The influences of IA/AAc weight ratios on frontal velocities, temperatures, and conversions on the reaction time are thoroughly investigated and discussed where the amount of AAm monomer remains constant. Fourier transform‐infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscope (SEM), dynamic mechanical analysis, and the swelling measurement are applied to characterize the as‐synthesized poly(IA‐co‐AAc‐co‐AAm) hydrogels. Interestingly, the swelling ratios of the hydrogels are changed with different IA/AAc contents, and the maximum swelling ratios are ~4439% in water. SEM images describe highly porous morphologies and explain good swelling capabilities. Moreover, the poly(IA‐co‐AAc‐co‐AAm) hydrogels exhibit superior pH‐responsive ability. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2214–2221  相似文献   

4.
Highly swollen hydrogels made by the polymerization of acrylamide (AAm) with some anionic monomers such as citraconic acid (CITA) and sodium acrylate (SA) were investigated as a function of composition to find materials with swelling and dye sorption properties. Highly swollen AAm/CITA/SA or AAm/SA/CITA hydrogels were prepared by free radical solution polymerization in aqueous solutions of AAm with CITA and SA as co‐monomers and two multifunctional crosslinkers such as ethylene glycol dimethacrylate (EGDMA) and 1,4‐butanediol dimethacrylate (BDMA). Swelling experiments were performed in water at 25°C, gravimetrically. Chemically crosslinked AAm/CITA/SA or AAm/SA/CITA hydrogels were used in experiments on sorption of water‐soluble monovalent cationic dye such as “Nil blue” (Basic Blue 12; BB 12). Equilibrium percentage swelling values of AAm/CITA/SA or AAm/SA/CITA hydrogels were calculated in the range of 1797–22,098%. Some swelling kinetic parameters were found. Diffusion behavior of water was investigated. Water diffusion into the hydrogels was found to be non‐Fickian in character. For sorption of cationic dye, BB 12 into the hydrogels was studied by batch sorption technique at 25°C. AAm/CITA/SA or AAm/SA/CITA hydrogels in the dye solutions showed coloration, whereas AAm hydrogel did not show sorption of any dye from the solution. The sorption capacity of AAm/CITA/SA or AAm/SA/CITA hydrogels was investigated. At the end of the experiments, 21.70–78.91% BB 12 adsorptions were determined. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
《European Polymer Journal》2002,38(11):2133-2141
Superswelling acrylamide (AAm)/maleic acid (MA) hydrogels were prepared by free radical polymerization in aqueous solution of AAm with MA as comonomer with some multifunctional crosslinkers such as trimethylolpropane triacrylate and 1,4-butanediol dimethacrylate. AAm/MA hydrogels were used in experiments on swelling and adsorption of a water-soluble monovalent cationic dye such as Basic Blue 17 (Toluidin Blue). As a result of dynamic swelling tests, the influence of relative content of MA on the swelling properties of the hydrogel systems was examined. AAm/MA hydrogels were swollen in the range 1660-6050% in water, while AAm hydrogels swelled in the range 780-1360%. Equilibrium water content of AAm/MA hydrogels were calculated in the range 0.8873-0.9837. Water intake of hydrogels followed a non-Fickian type diffusion. The uptake of the cationic dye, BB-17 to AAm/MA hydrogels is studied by batch adsorption technique at 25 °C. In the experiments of the adsorption equilibrium, S-type adsorption in Giles's classification system was found. The binding ratio of hydrogel/dye systems was gradually increased with the increase of MA content in the AAm/MA hydrogels.  相似文献   

6.
In this study, (sodium alginate (NaAlg)/acrylamide (AAm)) interpenetrating polymer networks (IPN) have been prepared at three different compositions, where the sodium alginate composition varies 1, 2, and 3% (w/v) in 50% (w/v) acrylamide solutions. These solutions have been irradiated with a 60Co‐γ source at different doses. The percent conversion was determined gravimetrically and 100% gelation was achieved at the 10.0 kGy dose. The swelling results at pH 7.0 and 9.0 indicated that (NaAlg/AAm)3IPN hydrogel, containing 3% NaAlg showed maximum % swelling in water, with swelling increasing in the order of Ni2+>Cd2+>Pb2+. Diffusion in aqueous solutions of metal ions within (NaAlg/AAm)IPN hydrogels was found to be Fickian character. Diffusion coefficients of (NaAlg/AAm)IPN hydrogels in water and aqueous solutions of metal ions were calculated. The maximum weight loss temperature and half life temperature for NaAlg, PAAm, (NaAlg/AAm)IPN and (NaAlg/AAm)IPN‐metal ion systems were found from thermal analysis studies. In the adsorption experiments, the efficiency of (NaAlg/AAm)IPN hydrogels to adsorb nickel, cadmium and lead ions from water was studied. (NaAlg/AAm)IPN hydrogels showed different adsorption for different aqueous solution of metal ion at pH 7.0. Adsorption isotherms were constructed for the (NaAlg/AAm)IPN‐metal ion systems. S type adsorption in the Giles classification system was found.  相似文献   

7.
Abstract

Using different types and concentrations of crosslinkers, acrylamide (AAm) hydrogels have been prepared with chemical initiation and gamma irradiation techniques. The effects of the preparation method, crosslinkers type and concentration on swelling behavior of AAm hydrogels were investigated. Swelling was performed in distilled water and followed gravimetrically. Swelling parameters such as equilibrium swelling degree, equilibrium water content (EWC), maximum swelling, initial swelling rate, diffusion exponent and coefficient, and network parameters such as molecular mass between crosslinks, crosslink density, mesh size, and porosity were calculated and evaluated. The range of equilibrium swelling degree of AAm hydrogels was varied from 255% to 1450% depending upon the preparation method, crosslinker type, and crosslinker concentration. The diffusion of water into AAm hydrogels was found to be nonFickian.  相似文献   

8.

Acrylamide (AAm)/Acrylic Acid (AAc) copolymers have been prepared by gamma irradiation of binary mixtures at three different compositions where the acrylamide/acrylic acid mole ratios varied around 15, 20, and 30%. Threshold dose for 100% conversion of monomers into hydrogels was found to be 8.0 kGy. Poly(Acrylamide‐co‐Acrylic Acid) (poly(AAm‐co‐AAc)) hydrogels have been considered for the removal of uranyl ions from aqueous solutions. Swelling behavior of these hydrogels was determined in distilled water at different pH values and in aqueous solutions of uranyl ions. The results of swelling tests at pH 8.0 indicated that poly(AAm‐co‐AAc) hydrogel, containing 15% acrylamide showed maximum % swelling. Diffusion of water and aqueous solutions of uranyl ion into hydrogels was found to be non‐Fickian in character and their diffusion coefficients were calculated. The effect of pH, composition of hydrogel, and concentration of uranyl ions on the adsorption process were studied at room temperature. It was found that one gram of dry poly(AAm‐co‐AAc) hydrogel adsorbed 70–320 mg and 70–400 mg uranyl ions from aqueous solutions of uranyl nitrate and uranyl acetate in the initial concentration range of 50–1500 mg UO2 2+L?, depending on the amount of AAc in the hydrogels, respectively. Adsorption isotherms were constructed for poly(AAm‐co‐AAc)–uranyl ion system indicating an S type of adsorption in the Giles classification system. It is concluded that crosslinked poly(AAm‐co‐AAc) hydrogels can be successfully used for the removal of uranyl ions from their aqueous solutions.  相似文献   

9.
Graft copolymerization of mixtures of acrylic acid (AA) and acrylamide (AAm) onto chitosan was carried out by using potassium persulfate (KPS) as a free radical initiator in the presence of methylenebisacrylamide (MBA) as a crosslinker. The effect of reaction variables, such as MBA concentration and AA/AAm ratio on the water absorbency capacity have been investigated. The polymer structures were confirmed by FTIR spectroscopy. Water absorbencies were compared for the hydrogels before and after alkaline hydrolysis. In the non-hydrolyzed hydrogel, enhanced water absorbency was obtained with increasing AA in monomer feed. However, after saponification, the sample with high AAm ratio exhibited more water absorbency. These behaviors were discussed according to structural parameters. The swelling kinetics of the superabsorbing hydrogels was studied as well. The hydrogels exhibited ampholytic and reversible pH-responsiveness characteristics. The swelling variations were explained according to swelling theory based on the hydrogel chemical structure. The hydrogels exhibited salt-sensitivity and cation exchange properties. The pH-reversibility and on-off switching properties of the hydrogels make the intelligent polymers as good candidates for considering as potential carriers for bioactive agents, e.g. drugs.  相似文献   

10.
Citric acid (CAc) moieties containing acrylamide (AAm) hydrogels were prepared by gamma irradiation of their aqueous solutions. A possible polymerization and crosslinking mechanism for acrylamide/citric acid (AAm/CAc) hydrogels is proposed. The effects of irradiation dose and citric acid content on swelling behavior were investigated. Swelling took place in water at 25°C and was followed gravimetrically. Incorporation of a relatively low amount of citric acid to acrylamide hydrogel increased its swelling up to 950% from 700%. The diffusion of water into AAm/CAc hydrogels was found to be a non-Fickian type. Diffusion coefficients of AAm/CAc hydrogels found as 5 × 10?7? 10 × 10?7 cm2 sec?1. It has also been found that the number average molar mass between crosslinks is increased with the CAc content and decreased with irradiation dose.  相似文献   

11.

The swelling behavior of acrylamide (AAm)–based polyampholyte hydrogels in water and in aqueous salt (NaCl) solutions was investigated. [(Methacrylamido)propyl]trimethyl‐ammonium chloride (MAPTAC) and acrylic acid (AAc) were used as the ionic comonomer in the hydrogel preparation. Three sets of hydrogels containing 70 mol% AAm and 30 mol% ionic comonomers of varying mole ratios were prepared. The variations of the hydrogel volume in response to changes in pH, and salt concentration were measured. As pH increases from 1, the hydrogel volume V eq in water first increases and reaches a maximum value at a certain pH. Then, it decreases again with a further increase in pH and attains a minimum value around the isoelectric point (IEP). After passing the collapsed plateau region, the gel reswells again up to pH=7.1. The reswelling of the collapsed gels containing 10 and 4% MAPTAC occurs as a first‐order phase transition at pH=5.85 and 4.35, respectively, while the hydrogel with 1% MAPTAC reswells continuously beyond its IEP. Depending on pH of the solution, the hydrogels immersed in salt solutions exhibit typical polyelectrolyte or antipolyelectrolye behavior. The experimental swelling data were compared with the predictions of the Flory‐Rehner theory of swelling equilibrium including the ideal Donnan equilibria. It was shown that the equilibrium swelling theory qualitatively predicts the experimental behavior of polyampholyte hydrogels.  相似文献   

12.
In this study, acrylamide (AAm)/aconitic acid (ACA) copolymers were prepared with two different mol% of aconitic acid 4%, 17% and were irradiated with gamma irradiation at different irradiation doses (4 - 25kGy). The percent yield was assigned by gravimetrical method. The effect of irradiation dose, pH and involved amounts of monomers (AAm/ACA) in hydrogels on swelling properties were investigated. The conversion of monomers to hydrogels was 100% at 25kGy. Poly(acrylamide-co-aconitic acid) P(AAm/ACA) hydrogels have been used for the adsorption of some aqueous solutions of dyes such as Methylene Blue (MB) and Safranine-O (S). The hydrogels were swollen in distilled water at pH 3, 5, 7, 8 and in aqueous solutions of dyes. The initial swelling rates of hydrogels are increased by increasing of pH. The effects of concentration of the aqueous solutions of dye and hydrogel composition on the adsorption were investigated. The adsorption is increased and changed depending on the structure of dye and composition of hydrogel.  相似文献   

13.
A series of magnetic semi‐interpenetrating polymer network (semi‐IPN) hydrogels was prepared in one‐stage strategy composed of linear poly(vinyl alcohol) (PVA) chains and magnetic γ‐Fe2O3 nanoparticles entrapped within the cross‐linked poly(acrylamide‐co‐vinylimidazole) (poly(AAm‐co‐VI)) network. The influence of PVA, weight ratio of AAm:VI, γ‐Fe2O3, and MBA on the swelling properties of the obtained nanocomposite hydrogels was evaluated. The prepared magnetic semi‐IPN hydrogels were fully characterized and used as absorbent for removal of Pb(II) and Cd(II) from water. Factors that influence the metal ion adsorption such as solution pH, contact time, initial metal ion concentration, and temperature were studied in details. The experimental results were reliably described by Langmuir adsorption isotherms. The adsorption capacity of semi‐IPN nanocomposite for Pb(II) and Cd(II) were175.80 and 149.76 mg g?1, respectively. The kinetic experimental data indicated that the chemical sorption is the rate‐determining step. According to thermodynamic studies, Pb(II) and Cd(II) adsorption on the hydrogels was endothermic and also chemical in nature. The prepared magnetic PVA/poly(AAm‐co‐VI) semi‐IPN hydrogels could be employed as efficient and low‐cost adsorbents of heavy metal ions from water. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Based on a biodegradable cross-linker, acryloyloxyethylaminopolysuccinimide (AEA-PSI), a series of looser cross-linked poly(N-isopropylacrylamide-co-acrylic acid) [P(NIPAAm-co-AAc)] hydrogels were prepared, and their water content, swelling/deswelling kinetics, and the morphology of the gels were investigated. The swelling behaviors of AEA-PSI-cross-linked P(NIPAAm/AAc) hydrogels were investigated in Dulbecco’s phosphate-buffered saline (pH = 7.4), in the distilled water, and in the simulated gastric fluids (pH = 1.2), respectively. The water contents of the hydrogels were controlled by the monomer molar ratio of NIPAAm/AAc, swelling media, and the temperature. In the swelling kinetics, all the dried hydrogels exhibited fast swelling behavior, and the swelling ratios were influenced significantly by the amounts of AEA-PSI and AAc content. The deswelling kinetics of the hydrogel were independent of the content of AAc and cross-linker. Lastly, the morphology of the hydrogels was estimated by the field scan electron microscopy.  相似文献   

15.
Ionically cross-linked polyampholytic hydrogels were synthesized by redox copolymerization of acrylamide and an ionic complex of (N,N-diethylamino)ethyl methacrylate and acrylic acid (designated as PADA hydrogel). The swelling behavior of the hydrogels in water indicated that a minimal equilibrium swelling ratio is found when the molar ratio of anionic/cationic monomers was 1.55. In NaCl solution, the hydrogels exhibited the typical swelling behavior of conventional polyampholytic gels. Their equilibrium swelling ratios increased with an increase in the NaCl concentration. In solutions of multivalent ions (CaCl2 and trisodium citrate solutions), the equilibrium swelling ratios of the hydrogels increased first and were then followed by a decrease with an increase in salt concentration. Interestingly, an unexpected abrupt swelling phenomenon was observed when the fully swollen hydrogels in salt solution were transmitted to pure water. The unique swelling behavior of PADA hydrogels depends not only on the molar ratio of the anionic/cationic monomers but also on the valency of the ions.  相似文献   

16.
pH‐sensitive poly(acrylamide‐co‐itaconic acid) [P(AAm/IA)] hydrogels were prepared by radiation induced copolymerization of acrylamide (AAm) and itaconic acid (IA) at various ratios. Swelling and shrinking behaviors of these hydrogels were found greatly dependent on the composition of the hydrogel and pH of the buffer solution. The basic structural parameters of the P(AAm/IA) networks such as the molecular weight between crosslinks (M c) and polymer–solvent interaction parameter (χ) were also determined using the modified Flory‐Rehner equations. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2586–2594, 2004  相似文献   

17.
The peculiarities of the equilibrium swelling ratio and swelling-shrinking kinetics of polyelectrolyte copolymeric hydrogels consisting of acrylamide and itaconic acid (AAm/IA) have been studied in water/nonsolvent (acetone, methanol, ethanol and 1-butanol) mixtures as a function of solvent composition and IA content in the hydrogel. The phase transition of these hydrogels was generated by changing the solvent composition by progressive substitution of water by the nonsolvent. For all P(AAm/IA) hydrogels, the form of the shrinking curves was determined to be strongly dependent on the type of the nonsolvent used. The rate of shrinking of these hydrogels increased in the order 1-butanol < ethanol < methanol < acetone.  相似文献   

18.
以丙烯酰胺(AAm)、丙烯酸(AAc)合成了单体配比分别为1,2、1/1、2,1的AAm/AAcc水凝胶,采用分光光度计法研究了此水凝胶对水溶性单价阳离子染料碱性藏花红的吸附特性,测定了它们的吸附动力学曲线和吸附等温线:探讨了水凝胶单体组成对该染料吸附性能的影响:并且用静电场理论解释了解吸后水凝胶更优的再吸附特性,研究表明,AAm,AAc水凝胶可作为染料污水处理中一种良好的吸附剂。  相似文献   

19.
辐射交联制备改性CMC水凝胶的溶胀行为研究   总被引:10,自引:0,他引:10  
利用丙烯酰胺 (AAm)接枝改性纤维素 ,然后进行羧甲基化反应得到高取代度的丙烯酰胺 羧甲基纤维素钠 (AAm CMC Na) .对该材料进行γ射线辐照制备出新型改性CMC水凝胶 .研究了这种水凝胶的溶胀动力学、交联动力学以及温度、pH值和无机盐浓度对水凝胶溶胀行为的影响 ,并与CMC Na水凝胶进行了比较 .结果表明 ,该水凝胶和CMC Na水凝胶相比 ,优点在于辐照交联所用的剂量下降 ,而且所需的CMC浓度减少 .AAm CMC Na水凝胶的溶胀度随温度升高而增大 ,在pH为 6~ 8范围内达到最大值 ,并随无机盐浓度与吸收剂量增加而下降 ,表现出较好的温度敏感性和pH敏感性 ,可望作为吸水材料和水保持剂  相似文献   

20.
Semi‐interpenetrating network (semi‐IPN) hydrogels, composed of poly(aspartic acid) (PAsp) and poly(acrylic acid) (PAAc) with various ratios of PAsp to AAc, were prepared. In this work, swelling kinetics was investigated through calculating some parameters. The swelling ratios were measured at room temperature, using urea solutions as liquids to be absorbed. Compared to in deionized water, the hydrogels showed larger swelling ratios in urea solutions, which might be attributed to the chemical composition of urea. The equilibrium swelling ratio could achieve 600 g/g, and the equilibrium urea/water contents were more than 0.99. The diffusion exponents were between 0.5 and 0.7, suggesting that the solvent transport into the hydrogel was dominated by both diffusion and relaxation controlled systems. Therefore, the PAsp/PAAc semi‐IPN hydrogels were appropriate to carry substances in a urea/water environment for pharmaceutical, agricultural, environmental, and biomedical applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 666–671, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号