首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The occurrence of breakdown in slender vortex flows as a ``bubble'' or ``spiral'' pattern depends on the degree of radial deflection of the vortex core from its original axis as shown in [1]. A smooth transition from a bubble to a spiral-type ``mode'' can be forced by inducing a small asymmetric disturbance which led to the conclusion, that the patterns do not represent different fundamental modes of breakdown. The subject presented herein addresses the following question: how does breakdown evolve in a swirling flow in which the vortex core is forced on a straight axis? In addition, what is the effect of turbulent inflow conditions? This type of vortex conditions is achieved in a spinning tube flow. The swirl is introduced at the entrance of the rotating tube with a honeycomb package and maintained by the viscous action in the boundary layer of the spinning tube. A diffuser at the end induces an adverse pressure gradient to force the breakdown. Flow visualization experiments are carried out to characterize the nature of breakdown over a range of different flow conditions. For some selected characteristic stages, detailed velocity fields were obtained using the method of Digital Particle-Image-Velocimetry (DPIV). The results show, that for the range of parameters investigated, breakdown is initiated at Rossby-numbers below a critical value of Ro ≈ 0.6 similar to those observed in other experiments. The bursted part of the vortex has a near axi-symmetric slender conical shape containing approximately stagnant flow. Its downstream end is characterized by a jump-like contraction where the flow evolves into a jet with enhanced swirl on the axis. It is only in this region downstream of the jump-like contraction that asymmetric instabilities and wavy flow patterns could be observed. Perturbations caused by them travel upstream but do not change the near-axisymmetric shape of the bursted part of the vortex.  相似文献   

2.
An experimental analysis of the precessing vortex core (PVC) instability in a free swirling jet of air at ambient pressure and temperature is performed by means of laser Doppler velocimetry (LDV) and particle image velocimetry (PIV). Two parametric studies are considered, varying the swirl parameter and the Reynolds number. The range of parameters considered allowed to study conditions of strong precession as well as the inception and settlement of the instability. Mean velocity and standard deviation profiles, power spectral density functions and probability density functions for the axial and tangential velocity components are presented. Average as well as instantaneous PIV maps are considered in the characterization of the flowfield structure and detection of the instantaneous position of the vortex center. Joint analysis of velocity PDFs and power spectra shows that the PVC contribution to the global statistics of the velocity field can be properly separated from the contribution of the true flow turbulence, giving additional insight to the physics of the precession phenomenon. The results obtained in the explored range of conditions indicate that the true turbulence intensity is not dependent on the swirl parameter. An erratum to this article can be found at  相似文献   

3.
The objective of the present work is to predict compressible swirl flow in the nozzle of air‐jet spinning using the realizable k–ε turbulence model and discuss the effect of the nozzle pressure. The periodic change of flow patterns can be observed. The recirculation zone near the wall of the injectors upstream increases in size and moves gradually upstream, whereas the vortex breakdown in the injector downstream shifts slowly towards the nozzle outlet during the whole period. A low axial velocity in the core region moves gradually away from the centerline, and the magnitude of the center reverse flow and the area occupied by it increase with axial distance due to the vortex breakdown. From the tangential velocity profile, there is a very small free‐vortex zone. With increasing nozzle pressure, the velocity increases and the location of vortex breakdown is moved slightly downward. However, the increase in the velocity tends to decline at nozzle pressure up to a high level. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
The Dorodnitsyn finite element method for turbulent boundary layer flow with surface mass transfer is extended to include axisymmetric swirling internal boundary layer flow. Turbulence effects are represented by the two-layer eddy viscosity model of Cebeci and Smith1 with extensions to allow for the effect of swirl. The method is applied to duct entry flow and a 10 degree included-angle conical diffuser, and produces results in close agreement with experimental measurements with only 11 grid points across the boundary layer. The introduction of swirl (we/ue = 0.4) is found to have little effect on the axial skin friction in either a slightly favourable or adverse pressure gradient, but does cause an increase in the displacement area for an adverse pressure gradient. Surface mass transfer (blowing or suction) causes a substantial reduction (blowing) in axial skin friction and an increase in the displacement area. Both suction and the adverse pressure gradient have little influence on the circumferential velocity and shear stress components. Consequently in an adverse pressure gradient the flow direction adjacent to the wall is expected to approach the circumferential direction at some downstream location.  相似文献   

5.
Local transport of the flow momentum and scalar admixture in the near-field of turbulent swirling jets (Re = 5,000) has been investigated by using a combination of the particle image velocimetry and planar laser-induced fluorescence methods. Advection and turbulent and molecular diffusions are evaluated based on the measured distributions of the mean velocity and concentration and the Reynolds stresses and fluxes. As has been quantified from the data, the flow swirl intensifies the entrainment of the surrounding fluid and promotes mass and momentum exchange in the outer mixing layer. A superimposed swirl results in the appearance of a wake/recirculation region at the jet axis and, consequently, the formation of an inner shear layer. In contrast to the scalar admixture, the momentum exchange in the inner shear layer is found to be strongly intensified by the swirl. For the jet with the highest considered swirl rate, a substantial portion of the surrounding fluid is found to enter the unsteady central recirculation zone, where it mixes with the jet that is issued from the nozzle. The contribution of the coherent velocity fluctuations, which are induced by large-scale vortex structures, to the turbulent transport has been evaluated based on triple decomposition, which was based on proper orthogonal decomposition analysis of the velocity data sets. For the considered domain of the jet with the highest swirl rate and vortex breakdown, the contributions of detected helical vortex structures, inducing pressing vortex core, to the radial fluxes of the flow momentum and the scalar admixture are found to locally exceed 65% and 80%, respectively.  相似文献   

6.
This paper presents the results of a parametric experimental study of free swirling flow at the exit of a flat-vane axial swirler. A total of 16 data sets were acquired by combining four swirler vane angles (22°, 29°, 50.5°, and 58.3°) and four exit nozzles of different diameters (30, 40, 52, and 76 mm). Sophisticated pressure probes consisting of precise microphones and a two-component LDV system were used to investigate the effect of these geometrical parameters on swirling flow regimes characterized by the swirl number. Particular attention was paid to the precessing vortex core (PVC) phenomenon observed at the exit of the swirler nozzle. It has been shown that by varying the vane angle and the diameter of the exit nozzle, it is possible to independently control the swirl number value and the occurrence of a PVC. A distinct correlation has been found between the PVC-induced pressure pulsations detected by acoustic probes and the tangential velocity fluctuations measured by LDV. The use of microphones provides a quick way to measure the frequency response of swirl flow in a wide range of geometries and flow configurations. The PVC effect does not occur at low subcritical values of the integral swirl number (S < 0.5) and in the case of strong swirl flow (Sg = 0.9 and 1.2) in the absence of constriction by the nozzle (De/D0 = 1). The disappearance of the PVC effect for strong swirl flow without constriction is due to the extreme displacement of the flow to the nozzle walls. The absence of a PVC in the flow was inferred not only from measurements of the frequency response of the flow over a wide range of Re numbers, but also from the absence of specific markers in velocity RMS distributions. Measurement results are used to derive an empirical correlation of the integral swirl number and the Strouhal number with a modified geometric swirl number. This allows a generalization of the frequency characteristics of swirling flows with a PVC for flat-vane axial swirlers, which are widely used in engineering.  相似文献   

7.
This third part of the study deals with the time-dependent nature of vortex breakdown. The results show the unsteady velocity and vorticity field of the initiation and development of breakdown and transition between both predominant breakdown modes, the bubble and the spiral. During the development to breakdown, the generated amount of circumferential vorticity follows the theoretical prediction by Brown and Lopez (1990). This confirms the idea of positive feedback as the key-mechanism leading to vortex breakdown. We regard the bubble-type as the fundamental breakdown type, that is stationary and nearly axisymmetric. The circumferential vorticity is distributed in a form of an elliptical vortex-ring-like structure. Starting from this stage, an increase of volume flux to a higher Reynolds number leads to the transition to the spiral-type with an initial stretching of the vortex ring-like structure and a subsequent change to an asymmetric circumferential vorticity distribution. This in combination with the inductive effect causes the front stagnation point to be deflected radially away and later to rotate around the centerline. Consequently the approaching vortex core is radially deflected in opposite direction and evolves in a spiral path. The idea of a second positive feedback-mechanism gives a possible explanation for the transition. Following this theory the asymmetry of circumferential vorticity will trigger itself at a certain degree by the interaction with the inductively affected stagnation point and its influence on the approaching vortex core. This self-enhancing process will finally lead to the spiral-type breakdown in which the radial distance between rotating stagnation point and deflected vortex core is of the order of the characteristic vortex core radius. The reversed transition from the spiral to a stable bubble-type can be regenerated by decreasing the Reynolds number down to the value that corresponds to the stable bubble state. The flow structure evolves nearly in the time-reversed way as during transition from bubble towards the spiral.  相似文献   

8.
The focus of this study lies on turbulent incompressible swirling flows with high swirl intensity. A systematic parameter study is conducted to examine the sensitivity of the mean velocity field in a swirl chamber to changes in the Reynolds number, swirl intensity and channel outlet geometry. The investigated parameter range reflects the typical kinematic flow conditions found in heat transfer applications, such as the cooling of the turbine blade known as cyclone cooling. These applications require a swirl intensity, which is typically much higher than necessary for vortex breakdown. The resulting flows are known as flow regime II and III. In comparison to flow regime I, which denotes a swirling flow without vortex breakdown, these flow regimes are characterized by a subcritical behavior. In this context, subcritical means that the flow is affected by the downstream channel section. Based on mean velocity field measurements in various swirl chamber configurations, it is shown that flow regime III is particularly sensitive to these effects. The channel outlet geometry becomes a determining parameter and, therefore, small changes at the outlet can produce entirely different flow patterns in the swirl chamber. In contrast, flow regime II, as well as flow regime I and axial channel flows, are much less sensitive to changes at the channel outlet. The knowledge about the sensitivity of the flow in different flow regimes is highly relevant for the design of a cyclone cooling system. Cooling systems employing flow regime III can result in a weakly robust flow system that may change completely over the operating range. As a remedy, the swirl intensity needs to be decreased so that flow regime III cannot be reached, which, however, reduces the maximum achievable heat transfer in the cooling system. Alternatively, the flow has to transition back from flow regime III to flow regime II or I before the flow leaves the swirl chamber. Two practical methods are presented. These findings can be directly applied in the design processes of future cyclone cooling systems, and other applications of swirling flow.  相似文献   

9.
Flow in a simple swirl chamber with and without controlled inlet forcing   总被引:1,自引:0,他引:1  
Results are presented from a swirl chamber with and without controlled inlet forcing. The controlled inlet forcing is induced using arrays of vortex generators placed along one wall of the swirl chamber inlet duct. Flow visualization results are given, along with surveys of circumferential mean velocity, static pressure, and total pressure, at Reynolds numbers (based on inlet duct characteristics) as high as 8000. The controlled inlet forcing provides means to alter and control: (i) the spacing and number of Görtler vortices across the span of the swirl chamber, (ii) the amount of vortex development at a particular Reynolds number and circumferential location, (iii) the circumferential location and Reynolds number of initial Görtler vortex development, and (iv) the circumferential location and Reynolds number of Görtler vortex breakup into more chaotic flow.  相似文献   

10.
为理解绕水翼云空化流动的发展机理和探究水翼吸力面开孔射流的影响,采用密度 修正的RNG $k$-$\varepsilon $湍流模型和Schnerr-Sauer空化模型对原始NACA66(mod) 水翼和采用射流后的 水翼的云空化非定常过程进行模拟和对比分析;采用在水翼吸力面近壁区设立监测线的方法对近壁区的流场进行监测,得到 近壁区汽相体积分数、回射流速度、压力及压力梯度的时空分布云图;开展了云空化流场特性的涡动力学分析,进而分析水 翼云空化的发生机理和射流抑制空化的抑制机理. 结果表明:游离型空泡在下游溃灭时产生强烈的局部高压,其向上游传播 导致前缘空穴的一次回缩,而空穴的二次回缩受回射流的影响. 回射流的发展区域受限于较高的压力梯度,高的压力梯度一 直存在,但回射流在一个周期内的首次出现需要时间的积累. 在水翼吸力面射流使得射流孔附近压力升高,弥补了由于空化 和绕流造成的压降,压力梯度增大,抗逆压能力增强,对回射流起到阻挡作用;另一方面,射流使得回射流区域面积和回射 流的强度也有所减小,从而对云空化的发展起到抑制的效果. $Q$准则的涡结构云图相比于汽相体积分数云图能显示复杂的 流动结构,前缘附着型空穴和尾缘游离型空穴内存在旋涡,回射流对空穴存在剪切作用造成空穴脱落. 而射流对空穴和回射 流的剪切和阻挡使云空化发展得到抑制.   相似文献   

11.
Four riblet bends were tested to investigate the effects of riblets on pipe flows including the secondary flow on the Reynolds numbers; Re D =6×103–4×104. The pressure gradients on the smooth pipe downstream from the riblet bends were measured, and also the pressure losses of the bends only were measured. All riblet bends reduced the pressure gradient on the smooth pipe downstream from them, which means a drag reduction. Two of the riblet bends showed the maximum drag reduction of about 4 percent at Re D = 6500; this reduction rate was significant considering the uncertainty of the present experiments. Since the pressure losses of these two riblet bends were almost identical to that of the smooth bend at Re D = 6500, they could cause a net drag reduction of about 4 percent on the piping system including these bends at that Reynolds number. Furthermore, the velocity profiles measured by LDV indicated that the secondary flow becomes weaker downstream from the riblet bends when a drag reduction is recognized there.Nomenclature D pipe diameter - D 0 the distance from the valley to the valley passing through the pipe center - H height of groove - P nondimensional static pressure (p/it/(U 0 2 ):p is gauge pressure) - dP/dX nondimensional pressure gradient - Rc curvature of bend - Re D Reynolds number based on bulk velocity and pipe diameter - s spacing of groove - U mean streamwise velocity along the horizontal diameter - U 0 bulk velocity - V mean vertical velocity along the horizontal diameter - x streamwise direction along the pipe axis (see Fig. 1) - X nondimensionalx (=x/D) - y radial direction in the horizontal plane which is perpendicular to the plane including the bend (see Fig. 1) - yUV swirl intensity (nondimensional swirl intensity:yUV/(DU 0 2 ))  相似文献   

12.
The process of laminar to turbulent transition induced by a von Karman vortex street wake, was studied for the case of a flat plate boundary layer. The boundary layer developed under zero pressure gradient conditions. The vortex street was generated by a cylinder positioned in the free stream. An X-type hot-wire probe located in the boundary layer, measured the streamwise and normal to the wall velocity components. The measurements covered two areas; the region of transition onset and development and the region where the wake and the boundary layer merged producing a turbulent flow. The evolution of Reynolds stresses and rms-values of velocity fluctuations along the transition region are presented and discussed. From the profiles of the Reynolds stress and the mean velocity profile, a ‘negative' energy production region along the transition region, was identified. A quadrant splitting analysis was applied to the instantaneous Reynolds stress signals. The contributions of the elementary coherent structures to the total Reynolds stress were evaluated, for several x-positions of the near wall region. Distinct regions in the streamwise and normal to the wall directions were identified during the transition.  相似文献   

13.
单柱单锥型液—液旋流分离管内流场的LDV诊断   总被引:2,自引:0,他引:2  
应用二维激光多普勒仪(LDV)对一种单柱单锥型液-液旋流分离管内流场进行了测量,考察了流量、溢流比、压力比和气芯等参数对流场的影响。测量结果表明:切向速度分布呈典型的Rankine涡结构,沿轴向衰减很少,表明所用锥角是合适的;因该旋流管的水力直径较大,切向速度的总体水平较低,由于对了离特性带来了不利影响。此外,没有观察到切向速度分布的的双峰分布现象。轴向速度的总体水平较低,尤其是在锥形管的上游更为  相似文献   

14.
 A laminar wall jet undergoing transition is investigated using the particle image velocimetry (PIV) technique. The plane wall jet is issued from a rectangular channel, with the jet-exit velocity profile being parabolic. The Reynolds number, based on the exit mean velocity and the channel width, is 1450. To aid the understanding of the global flow features, laser-sheet/smoke flow visualizations are performed along streamwise, spanwise, and cross-stream directions. Surface pressure measurements are made to correlate the instantaneous vorticity distribution with the surface pressure fluctuations. The instantaneous velocity and vorticity field measurements provide the basis for understanding the formation of the inner-region vortex and the subsequent interactions between the outer-region (free-shear-layer region) and inner-region (boundary-layer region) vortical structures. Results show that under the influence of the free-shear-layer vortex, the local boundary layer becomes detached from the surface and inviscidly unstable, and a vortex is formed in the inner region. Once this vortex has formed, the free-shear-layer vortex and the inner-region vortex form a vortex couple and convect downstream. The mutual interactions between these inner- and outer-region vortical structures dominate the transition process. Farther downstream, the emergence of the three-dimensional structure in the free shear layer initiates complete breakdown of the flow. Received: 8 November 1995/Accepted: 6 November 1996  相似文献   

15.
A detailed investigation of the velocity and vorticity fields of a pair of vortices growing over a 75°-sweep delta wing is carried out through LDV measurements of three components of velocity and vorticity. Data are obtained along one of the vortices. The wing is undergoing a ramp-like pitch-up motion. The evolution of the flow field in four planes normal to the free-stream velocity is captured at 100 time instants through the wing motion. The delta wing is pitched through angles of attack ranging from 28° to 68°. From the velocity data at each incidence, the corresponding vorticity field is calculated. Hysteresis effects on vortex development and breakdown are studied through axial velocity and vorticity contours. The topologies of streamlines and vortex lines are compared with the corresponding topologies of the steady case. It is found that vortex breakdown can be detected first by a drastic reduction of the axial velocity. This phenomenon is developing in a non-axisymmetric fashion, beginning at the inboard side of the vortex. This is followed by a reduction of the axial vorticity component and finally by a reversal of the azimuthal vorticity component.This work was supported by the Air Force Office of Scientific Research, Project No. AFOSR-91-0310 and was monitored by Major Daniel Fant.  相似文献   

16.
This paper reports an experimental investigation of a non-reacting turbulent swirling flow in a practical vortex combustor. The flow was examined for the conditions characteristic of the presence of a breakdown zone and a strong flow instability appearing at swirl numbers S>0.5. Flow visualization techniques, LDA measurements and acoustic probes were employed to study the unsteady flow characteristics. Based on the experimental results a positive first helical mode of instability was identified with a wavelength and frequency depending on swirl. The wavelength was confirmed to grow monotonically with S, while the dominant frequency of the flow pulsations was found to have an unusual parabolic evolution with swirl, with a minimum at S min=0.88. This finding was interpreted using a proposed kinematic model based on the contribution of two mechanisms: rotation and axial motion of the helical vortex. It was concluded that for S<S min the instability frequency is essentially dominated by the axial translation of the spiral vortex being inversely proportional to S and therefore giving a decreasing trend. For S>S min the frequency of the flow precession is more dependent on the angular transportation of the vortex core, which resulted in the expected growing dependence on S.  相似文献   

17.
A method of solving the plane linear problem of a steady-state irrotational flow about a body under the free surface of a heavy fluid of finite depth is developed. The boundary-value problem is formulated for a complex perturbed velocity and is reduced to a singular integral equation relative to the intensity of a vortex layer that models the hydrofoil. The kernel of the equation is the exact solution of the corresponding boundary-value problem for a vortex of unit intensity. The equation is solved by the discrete-vortex method. The effect of the parameters of the problem on the hydrodynamic characteristics of the elliptical hydrofoil and the shape of the free surface are estimated numerically. Omsk Division of the Sobolev Institute of Mathematics, Omsk 644099. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 6, pp. 85–90, November–December, 1998.  相似文献   

18.
An investigation of the flow resulting from the collision of two spheres at low Reynolds numbers is presented. Each sphere starts from rest and traverses a distance of 5 sphere diameters to the point of contact. Experimental and numerical results are compared for a symmetric collision; that is, a collision between two spheres of the same diameter and travelling with the same velocity. The flow consists of two axisymmetric recirculation zones which become a pair of colliding vortex rings, expanding radially from the collision point. Several examples of unbalanced collisions are also presented numerically, with one or both of the velocity and diameter of the spheres altered. These collisions break the symmetry, altering the post-collision expansion of the vortex rings.  相似文献   

19.
In this research, the developing turbulent swirling flow in the entrance region of a pipe is investigated analytically by using the boundary layer integral method. The governing equations are integrated through the boundary layer and obtained differential equations are solved with forth-order Adams predictor-corrector method. The general tangential velocity is applied at the inlet region to consider both free and forced vortex velocity profiles. The comparison between present model and available experimental data demonstrates the capability of the model in predicting boundary layer parameters (e.g. boundary layer growth, shear rate and swirl intensity decay rate). Analytical results showed that the free vortex velocity profile can better predict the boundary layer parameters in the entrance region than in the forced one. Also, effects of pressure gradient inside the boundary layer is investigated and showed that if pressure gradient is ignored inside the boundary layer, results deviate greatly from the experimental data.  相似文献   

20.
This paper presents a discussion of the results and conclusions drawn from a series of experiments conducted to investigate the swirl flow that are generated by a three lobed helical pipe mounted within a laboratory scale pneumatic conveying rig. The experiments employed Laser Doppler Anemometry (LDA) to quantify the strength of the induced vortex formations and the decay rates of the observed downstream swirl flows over a range of Reynolds number in the turbulent regime. Instantaneous point velocity measurements were resolved in three directions across regular measurement grids transcribed across parallel planes located at four distances downstream of the swirl inducing pipe section. The equivalent axial, radial and tangential velocities were subsequently computed at these grids points. The degree of swirl measured across each measurement plane was expressed in terms of a defined swirl number.It was concluded that the three lobed helical pipe gave rise to a wall jet type of swirl whose rate of observed downstream decay is related to the Reynolds number of the upstream flow and the distance downstream of the swirl pipe. The decay rates for the swirl flows were found to be inversely proportional to the Reynolds number of the upstream flow. The swirl pipe was observed to create a redistribution of the downstream velocity field from axial to tangential, accompanied by a transfer of axial to angular momentum. The findings of this paper are believed to improve understanding to assist the selective use of swirl flow within lean phase particles pneumatic transport systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号