首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A stereoscopic PIV (Particle Image Velocimetry) technique was used to measure the three-dimensional flow structure of the turbulent wake behind a marine propeller with five blades. The out-of-plane velocity component was determined using two CCD cameras with an angular displacement configuration. Four hundred instantaneous velocity fields were measured for each of four different blade phases, and ensemble averaged in order to find the spatial evolution of the propeller wake in the region from the trailing edge up to one propeller diameter (D) downstream. The influence of propeller loading conditions on the wake structure was also investigated by measuring the velocity fields at three advance ratios (J=0.59, 0.72 and 0.88). The phase-averaged velocity fields revealed that a viscous wake formed by the boundary layers developed along the blade surfaces. Tip vortices were generated periodically and the slipstream contracted in the near-wake region. The out-of-plane velocity component and strain rate had large values at the locations of the tip and trailing vortices. As the flow moved downstream, the turbulence intensity, the strength of the tip vortices, and the magnitude of the out-of-plane velocity component at trailing vortices all decreased due to effects such as viscous dissipation, turbulence diffusion, and blade-to-blade interaction.  相似文献   

2.
The flow characteristics of the propeller wake behind a container ship model with a rotating propeller were investigated using a two-frame PIV (Particle Image Velocimetry) technique. Ensemble-averaged mean velocity fields were measured at four different blade phases and ensemble-averaged to investigate the flow structure in the near-wake region. The mean velocity fields in longitudinal planes show that a velocity deficit is formed in the regions near the blade tips and hub. As the flow develops in the downstream direction, the trailing vortices formed behind the propeller hub move upward slightly due to the presence of the hull wake and free surface. Interaction between the bilge vortices and the incoming flow around the hull causes the flow structure to be asymmetric. Contour plots of the vorticity give information on the radial distribution of the loading on the blades. The radial velocity profiles fluctuate to a greater extent under the heavy (J=0.59) and light loading (J=0.88) conditions than under the design loading condition (J=0.72). The turbulence intensity has large values around the tip and trailing vortices. As the wake develops in the downstream direction, the strength of the vorticity diminishes and the turbulence intensity increases due to turbulent diffusion and active mixing between the tip vortices and the adjacent wake flow.  相似文献   

3.
Turbulent kinetic energy (TKE) budget measurements were conducted for a symmetric turbulent planar wake flow subjected to constant zero, favorable, and adverse pressure gradients. The purpose of this study is to clarify the flow physics issues underlying the demonstrated influence of pressure gradient on wake development, and provide experimental support for turbulence modeling. To ensure the reliability of these notoriously difficult measurements, the experimental procedure was carefully designed on the basis of an uncertainty analysis. Three different approaches were applied for the estimate of the dissipation term. An approach for the determination of the pressure diffusion term together with correction of the bias error associated with the dissipation estimate is proposed and validated with the DNS results of Moser et al (J Fluid Mech (1998) 367:255–289). This paper presents the results of the turbulent kinetic energy budget measurement and discusses their implications for the development of strained turbulent wakes.An erratum to this article can be found at  相似文献   

4.
A visual study is performed in a supersonic, two-dimensional wake; the high value of the Reynolds number ensures that the wake is turbulent from the trailing edge. The flow is seeded by fluid vaporization in one boundary layer upstream of the trailing edge; a light sheet is generated by a Q-switched, high energy ruby laser. The set of photographs taken from the trailing edge up to the far wake is then processed after digitization of the pictures. A progressive contamination of the lower part of the wake by the fluid initially present in the upper part can be observed. In the far wake region, well organized large scale structures can be visualized. Statistics are performed and the results are compared with previous hot-wire measurements and discussed in terms of downstream wake behaviour.This paper was presented at the 9th Symposium on turbulence, University of Missouri-Rolla, October 1–3, 1984  相似文献   

5.
The turbulent kinetic energy budget in the wake generated by a high lift, low-pressure two-dimensional blade cascade of the T106 profile was investigated experimentally using hot-wire anemometry. The purpose of this study is to examine the transport mechanism of the turbulent kinetic energy and provide validation data for turbulence modeling. Point measurements were conducted on a high spatial resolution, two-dimensional grid that allowed precise derivative calculations. Positioning of the probe was achieved using a high accuracy traversing mechanism. The turbulent kinetic energy (TKE) convection, production, viscous diffusion and turbulent diffusion were all obtained directly from experimental measurements. Dissipation and pressure diffusion were calculated indirectly using techniques presented and validated by previous investigators. Results for all terms of the turbulent kinetic energy budget are presented and discussed in detail in the present work.  相似文献   

6.
In high flow velocity areas like those suitable for marine energy application, bathymetry variations create strong velocity fluctuations in the water column. It is therefore essential to characterize the turbulence evolution in the wake of seabed elements which may impact the loads on tidal turbines. For that purpose, experiments are carried out in a flume tank with Re as high as achievable in Froude similitude, with bathymetry variations experimentally represented with various wall-mounted square elements of height H: a cylinder or a cube as unitary obstacles and combinations of these elements followed by an inclined floor to resemble smooth bathymetry changes. The onset flow is a simple boundary layer profile with height 1.3 H and a low turbulence intensity. PIV and LDV measurements are used to investigate the wake past all test cases in order to distinguish high floor elevation cases (unitary obstacles) from mean roughness effect (obstacle combinations). Results show that the obstacle combinations produce a wake less extended than for a single wide cylinder that produces an extended wake and very energetic turbulent events. With a single cube, no downstream development of large turbulent events exist and the wake reduces by a factor of 3 compared to the wake cylinder case. An inclined floor downstream of a single wall-mounted obstacle reduces its wake length but does not alter the turbulent structures shed. Turbulent velocity profiles extracted from every wake topology investigated are also compared. The general conclusion is that: for small aspect ratio cases, the obstacle will not affect the water column. On the contrary, strong energetic turbulent events are emitted from large aspect ratio obstacles. Combinations cases stand in-between.  相似文献   

7.
An experimental study of the flow around and behind an axisymmetric body driven by a marine propeller is reported. Experiments were performed in a wind tunnel to document this complex, unsteady, three-dimensional, turbulent shear flow. Measurements were made in the boundary layer and wake of the bare body with a fixed dummy hub for the propeller, with the dummy hub rotating, and finally, with the propeller in operation. A five-hole yaw probe was employed for the mean-flow measurements, and two- and threesensor hotwires were used to obtained the mean and turbulent velocity fields. Part 1 of this two-part paper describes the experimental arrangement and circumferentially-averaged results which clarify certain overall aspects of the flow when it is viewed as a rotationally-symmetric flow. These are of special interest in marine hydrodynamics. In Part 2, the triple-sensor hotwire data are analyzed using phase-averaging techniques to reconstruct the instantaneous velocity and Reynolds-stress fields downstream of the propeller to show the evolution of the wakes of individual blades, blade-tip vortices, and the complex flow associated with vortices generated at hub-blade junctions.  相似文献   

8.
An experimental study of the turbulent wake of a self-propelled body in a wind tunnel is reported. A significant difference is formed between the turbulent kinetic energy balance in a wake with drag and in the wake of a self-propelled body: the production term is very small in comparison with the other terms of the turbulent kinetic energy balance, and this result seems to be typical of self-propulsion. The axial evolution of the wake radius and turbulent kinetic energy profiles are described. Sufficiently far downstream from the body, a self-similar profile is found. Particular attention is devoted to the turbulent kinetic energy balance; all the terms in the energy balance are evaluated experimentally.List of Symbols D diameter of the body - L axial length scale - l radial length scale - R radius of the body - r radial coordinate - r * radius of the wake - U mean axial velocity scale - Û defect velocity - U e freestream velocity - u fluctuating velocity scale - x axial coordinate - dissipation rate - = r/r * radial relative direction - azimuthal coordinate - kinematic viscosity - density  相似文献   

9.
An experimental study was conducted to characterize the dynamic wind loads and evolution of the unsteady vortex and turbulent flow structures in the near wake of a horizontal axis wind turbine model placed in an atmospheric boundary layer wind tunnel. In addition to measuring dynamic wind loads (i.e., aerodynamic forces and bending moments) acting on the wind turbine model by using a high-sensitive force-moment sensor unit, a high-resolution digital particle image velocimetry (PIV) system was used to achieve flow field measurements to quantify the characteristics of the turbulent vortex flow in the near wake of the wind turbine model. Besides conducting “free-run” PIV measurements to determine the ensemble-averaged statistics of the flow quantities such as mean velocity, Reynolds stress, and turbulence kinetic energy (TKE) distributions in the wake flow, “phase-locked” PIV measurements were also performed to elucidate further details about evolution of the unsteady vortex structures in the wake flow in relation to the position of the rotating turbine blades. The effects of the tip-speed-ratio of the wind turbine model on the dynamic wind loads and wake flow characteristics were quantified in the terms of the variations of the aerodynamic thrust and bending moment coefficients of the wind turbine model, the evolution of the helical tip vortices and the unsteady vortices shedding from the blade roots and turbine nacelle, the deceleration of the incoming airflows after passing the rotation disk of the turbine blades, the TKE and Reynolds stress distributions in the near wake of the wind turbine model. The detailed flow field measurements were correlated with the dynamic wind load measurements to elucidate underlying physics in order to gain further insight into the characteristics of the dynamic wind loads and turbulent vortex flows in the wakes of wind turbines for the optimal design of the wind turbines operating in atmospheric boundary layer winds.  相似文献   

10.
The objective of this experimental study is to characterise the small-scale turbulence in the intermediate wake of a circular cylinder using measured mean-squared velocity gradients. Seven of the twelve terms which feature in ε, the mean dissipation rate of the turbulent kinetic energy, were measured throughout the intermediate wake at a Reynolds number of Re d  ≈ 3000 based on the cylinder diameter (d). Earlier measurements of the nine major terms of ε by Browne et al. (J Fluid Mech 179: 307–326 1987) at a downstream distance (x) of x = 420d and Re d  ≈ 1170 are also used. Whilst departures from local isotropy are significant at all locations in the wake, local axisymmetry of the small-scale turbulence with respect to the mean flow direction is first satisfied approximately at x = 40d. The approach towards local axisymmetry is discussed in some detail in the context of the relative values of the mean-squared velocity gradients. The data also indicate that axisymmetry is approximately satisfied by the large scales at x/d ≥ 40, suggesting that the characteristics of the small scales reflect to a major extent those of the large scales. Nevertheless, the far-wake data of Browne et al. (1987) show a discernible departure from axisymmetry for both small and large scales.  相似文献   

11.
We report wall-resolved, large-eddy simulations for the case of a propeller operating upstream of a hydrofoil, mimicking a rudder. Our primary objective is the identification of wake features that are unique to this coupled system, when compared to open-water cases, which are usually the focus of experiments and computations in the literature. We were able to achieve unprecedented levels of numerical resolution, which capture the dynamics of all energetic eddies in the flow by using a scalable, conservative, structured solver in cylindrical coordinates. The boundary conditions on the rotating propeller and hydrofoil were enforced via an immersed boundary formulation. The largest values of turbulent stresses in the wake of the hydrofoil are achieved outwards from the radial coordinate of the tip of the propeller blades. This is due to spanwise gradients across the hydrofoil (in the direction parallel to the span of the hydrofoil), producing a displacement of the pressure side legs of the tip vortices towards outer coordinates, where they experience shear with the wake of the hydrofoil. The evolution of turbulence is non-monotonic across the streamwise direction. This is a consequence of the growing shear resulting from the complex interactions involving the shear layers from the trailing edge, the tip vortices and the two branches of the hub vortex coming from the two sides of the hydrofoil. Such a shear is reinforced by the spanwise velocities developed by the two branches of the propeller wake across the hydrofoil. Compared to an isolated propeller, these phenomena enhance turbulence production. The present results highlight that a downstream hydrofoil, typical of surface ships, is able to significantly intensify the wake signature of a propeller.  相似文献   

12.
A phase sampling procedure is used for the analysis of the non-steady, periodic flow field in the near wake of a marine propeller. This method allows to obtain a true ensemble averaging of the experimental measurements. The average is made over a large number of repeated experiments each of which is taken during a complete revolution of the propeller. The measurements are carried out in a recirculating water tunnel with a two-channel laser Doppler velocimeter. The computer-aided evaluation of the experimental results visualizes the following characteristic features of the wake: (1) the vortex sheet developing from the trailing edge; (2) a sudden increase of the axial velocity in the core of the tip vortex; (3) a boundary layer effect near the shaft of the propeller. From the analysis of the direction of vortex rotation along the radial direction of the blade, it is possible to derive information on the working conditions of the propeller.  相似文献   

13.
In the present study an experimental analysis of the velocity and pressure fields behind a marine propeller, in non-cavitating regime is reported. Particle image velocimetry measurements were performed in phase with the propeller angle, to investigate the evolution of the axial and the radial velocity components, from the blade trailing edge up to two diameters downstream. In phase pressure measurements were performed at four radial and eight longitudinal positions downstream the propeller model at different advance ratios. Pressure data, processed by using slotting techniques, allowed reconstructing the evolution of the pressure field in phase with the reference blade position. In addition, the correlation of the velocity and pressure signals was performed. The analysis demonstrated that, within the near wake, the tip vortices passage is the most important contribution in generating the pressure field in the propeller flow. The incoming vortex breakdown process causes a strong deformation of the hub vortex far downstream of the slipstream contraction. This process contributes to the pressure generation at the shaft rate frequency.  相似文献   

14.
 Unsteady turbulent near wake of a rectangular cylinder in channel flow has been studied experimentally with a laser Doppler velocimetry (LDV). The time-averaged and phase-averaged statistics were measured for the cylinders having various width-to-height ratios, b/h. It is shown that the turbulent intensities on the centerline of the channel have their maxima near the rear stagnation point of a recirculation region. The contours of coherent vorticity and streamline reproduce clearly the shed vortices from the cylinder observed by the flow visualization. The characteristics of the flow field, which depends on b/h, are discussed and the significant contribution of the coherent structure to the flow field is clarified. Moreover, the turbulent kinetic energy budget has been examined. Received: 19 January 1998/Accepted: 21 July 1998  相似文献   

15.
In this research, direct numerical simulation has been performed to study the turbulent wake behind a wall-mounted square cylinder with aspect ratio 4 and Reynolds number 12 000 (based on the free-stream velocity and obstacle side length) in a developing boundary layer. Owing to the relatively high Reynolds number and high aspect ratio of the cylinder tested, the wake is wide spread behind the cylinder and exhibits complex and energetic vortex motions. The lateral and tip vortex shedding patterns at different frequencies, coherent structures downstream of the obstacle, the production rate and distribution of turbulent kinetic energy, and the instantaneous pressure distribution in the wake region have been thoroughly investigated. In order to validate the numerical results, the first- and second-order flow statistics obtained from the simulations have been carefully compared against available wind-tunnel measurement data.  相似文献   

16.
The large-scale vortical structure of a turbulent separation bubble under the influence of an unsteady wake was investigated. The unsteady wake was generated by a spoked-wheel type wake generator installed in front of the separation bubble. This wake generator was rotated either clockwise or counter-clockwise at Re H=5.600. The mechanism of vortex shedding from the separation bubble was analyzed in detail by taking a conditional average as well as a phase average. Spatial box filtering (SBF) was used to extract the large-scale vortical structure from the turbulent separation bubble affected by the unsteady wake. To elucidate the influence of the unsteady wake on the large-scale vortical structure, conditional averages of the velocity, vorticity and turbulent kinetic energy were calculated. The nature of the convection of the vortical structure under the influence of an unsteady wake was analyzed. The dipole acoustic pressure level was predicted using Curle's integral of wall-pressure fluctuations.  相似文献   

17.
An experimental investigation on flow around an oscillating bubble and solid ellipsoid with a flat bottom was conducted. A single air bubble (equivalent diameter De=9.12 mm) was attached to a small disk (1 mm) at the end of a needle and suspended across a vertical square channel (100 mm) by wire wherein water flowed downward at a constant flowrate. The solid ellipsoid (De9.1 mm) was suspended across the square channel in the same manner. The equivalent diameter-based Reynolds and Eotvos number range, 1950<Re<2250 and 11<Eo<11.5, placed the bubble in the ‘wobbly’ regime while the flow in its wake was turbulent. A constant flowrate and one bubble size was used such that flow in the wake was turbulent. Velocity measurements of the flow field around the bubble or solid were made using a one CCD camera Digital Particle Image Velocimetry (DPIV) system enhanced by Laser Induced Fluorescence (LIF). The shape of the bubble or solid was simultaneously recorded along with the velocity using a second CCD camera and an Infrared Shadow Technique (IST). In this way both the flow-field and the boundary of the bubble (solid) were measured. The velocity vector plots of flow around and in the wake of a bubble/solid, supplemented by profiles and contours of the average and root-mean-square velocities, vorticity, Reynolds stress and turbulent kinetic energy, revealed differences in the wake flow structure behind a bubble and solid. One of the significant differences was in the inherent, oscillatory motion of the bubble which not only produced vorticity in the near-wake, but as a result of apparent vorticity stretching distributed the turbulent kinetic energy associated with this flow more uniformly on its wake, in contrast to the solid.  相似文献   

18.
Flow measurement around a model ship with propeller and rudder   总被引:1,自引:0,他引:1  
For the design of hull forms with better resistance and propulsive performance, it is essential to understand flow characteristics, such as wave and wake development, around a ship. Experimental data detailing the local flow characteristics are invaluable for the validation of the physical and numerical modeling of computational fluid dynamics (CFD) codes, which are recently gaining attention as efficient tools for hull form evaluation. This paper describes velocity and wave profiles measured in the towing tank for the KRISO 138,000 m3 LNG carrier model with propeller and rudder. The effects of propeller and rudder on the wake and wave profiles in the stern region are clearly identified. The results contained in this paper can provide an opportunity to explore integrated flow phenomena around a model ship in the self-propelled condition, and can be added to the International Towing Tank Conference benchmark data for CFD validation as the previous KCS and KVLCC cases.  相似文献   

19.
In the present study, an experimental study was conducted to characterize the effect of Reynolds number on flow structures in the turbulent wake of a circular parachute canopy by utilizing stereoscopic particle image velocime- try (Stereo-PIV) technique. The parachute model tested in the present study was attached by 28 nylon suspension lines and placed horizontally at the test section center of the wind tunnel. The obtained results showed that with the in- crease of Reynolds number, the intensities of the vortices near the downstream region of the canopy skirt were found to increase accordingly. However, the increase of Reynolds number did not result in a significant change in ensemble- averaged normalized x-component of the velocity, ensembleaveraged normalized vorticity, normalized Reynolds stress, and normalized turbulent kinetic energy distributions in the turbulent wake of the circular parachute canopy. The obtained results are very useful to further our understanding about the unsteady aerodynamics in the wake of flexible circular parachute canopies and to constitute a reference for CFD computation.  相似文献   

20.
Toward getting the vortex dynamics characteristics and wake structure of a sphere in proximity to a wall, the effect of a proximal flat plate on the wake of a stationary sphere is investigated via direct numerical simulation. The vortex shedding process and the significant variation of the wake structure are described in detail. The drag coefficient reduces and the wake structure of the sphere becomes complex due to the combined effect of the wake flow and the wall. A jet flow forms between the sphere and the flat plate, which suppresses the vortex separation on the bottom of the sphere. The asymmetric distributions of the coherent structures and the recirculation region behind the sphere are discussed. Besides vortex shedding patterns, the time-averaged velocity distribution, vortex dynamics, distribution regularities of turbulent kinetic energy and enstrophy are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号