首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
To accurately derive the kinetic and thermodynamic parameters governing the hydrolysis of the lactone ring at physiological pH, a derivative spectrophotometric technique was used for the simultaneous estimation of lactone and carboxylate forms of camptothecin (CPT). The hydrolysis of the CPT‐lactone and the lactonization of CPT‐carboxylate at 310.15 K followed a first‐order decay with apparent rate constants equal to 0.0279 ± 0.0016 min?1 and 0.0282 ± 0.0024 min?1, respectively. The activation energy associated with the hydrolysis of the CPT‐lactone and the lactonization of the CPT‐carboxylate as calculated from the Arrhenius equation was 89.18 ± 0.84 and 86.49 ± 2.7 kJ mol?1, respectively. The enthalpy and entropy of the thermodynamically favored hydrolysis reaction were on average 10.49 kJ mol?1 and 48.00 J K?1 mol?1, respectively. The positive enthalpy and entropy values of the CPT‐lactone hydrolysis indicate that the reaction is endothermic and entropically driven. The stability of CPT‐lactone in the presence of human serum albumin (HSA) was also analyzed. Notwithstanding the much faster hydrolysis of the CPT‐lactone in the presence of HSA at various temperatures, the energy of activation was determined to be similar to the one estimated in the absence of HSA, suggesting that HSA does not catalyze the hydrolysis reaction, but it merely binds, sequesters, and stabilizes the CPT‐carboxylate species. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 704–715, 2009  相似文献   

2.
Our previous experimental results have shown that ergosta‐4,6,8(14),22‐tetraen‐3‐one (ergone) is one of the main bioactive components of Polyporus umbellatus. The efficacy of ergone binding to human serum albumin (HSA) is critical for pharmacokinetic behavior of ergone. The interactions between ergone and HSA under simulative physiological conditions were investigated by the methods of fluorescence spectroscopy, absorption and circular dichroism spectroscopy. Fluorescence data revealed that the fluorescence quenching of HSA by ergone was the result of the formation of the ergone‐HSA complex. According to the modified Stern‐Volmer equation, the binding constants (Ka) between ergone and HSA were determined. The thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) for the reaction were calculated to be 0.989 kJ mol‐1 and 11.214 J mol‐1 K‐1, indicating that the hydrogen bonds and hydrophobic interactions played a dominant role in the binding of ergone to HSA. The conformational investigation showed that the presence of ergone decreased the α‐helical content of HSA and induced the slight unfolding of the polypeptides of protein. Furthermore, displacement experiments using warfarin and ibuprofen indicated that ergone could bind to site I of HSA, which was also in agreement with the results of the molecular modeling.  相似文献   

3.
In this paper the interaction of chromotrope 2B (Ch2B) with proteins was studied by the electrochemical method. Ch2B is an azo dye and shows irreversible electrochemical responses on the mercury electrode in a pH 3.0 Britton‐Robinson (B‐R) buffer solution. After the addition of human serum albumin (HSA) into the Ch2B solution, an interaction took place, and a supramolecular complex was formed in the mixed solution. The electrochemical parameters of the Ch2B‐HSA interaction system were calculated and compared. The results showed that in the absence and presence of HSA in Ch2B solution, the electrochemical parameters such as the formal potential E0, the electrode reaction standard rate constant ks, etc. showed no significant changes, which indicated that an electro‐inactive supramolecular biocomplex was formed. The free concentration of Ch2B in reaction solution was decreased, and this resulted in the decrease of the peak current. The binding constant and the binding ratio were calculated as 7.85 × 109 and 1:2, respectively, and the interaction mechanism was discussed. Based on the decrease of the peak current, this new electrochemical method was proposed for the determination of HSA in the concentration range of 2.0?25.0 mg/L with the linear regression equation as ΔIp′ (nA) = 50.56C (mg/L) — 6.72 (γ = 0.995). This method was further used to determine other different kinds of proteins, such as bovine serum albumin (BSA), oval albumin, etc‥ The new method was successfully applied to detect the content of albumin in healthy human serum samples with the results in good agreement with the traditional Coomassie Brilliant Blue G‐250 spectrophotometric method.  相似文献   

4.
A nanocylindrical wall structure was obtained by layer‐by‐layer (LbL) assembly of poly‐L ‐arginine (PLA) and human serum albumin (HSA) and characterized by scanning electron microscopy (SEM), scanning force microscopy (SFM), and cryogenic transmission electron microscopy (cryo‐TEM). SEM and SFM measurements of a lyophilized powder of (PLA/HSA)3 nanotubes yielded images of round, chimney‐like architectures with approximately 100 nm wall thickness. Cryo‐TEM images of the hydrated sample revealed that the tube walls are composed of densely packed HSA molecules. Moreover, when small‐angle X‐ray scattering was used to characterize the individual PLA and HSA components in aqueous solutions, maximum diameters of approximately 28 nm and 8 nm were obtained, respectively. These values indicate the minimum thickness of wall layers consisting of PLA and HSA. It can also be concluded from SEM as well as from cryo‐TEM images that the protein cylinders are considerably swollen in the presence of water. Furthermore, HSA retains esterase activity if assembled in nanotubes, as indicated by measurements of para‐nitrophenyl acetate hydrolysis under semi‐physiological conditions (pH 7.4, 22 °C). The enzyme activity parameters (Michaelis constant, Km, and catalytic constant, kcat) were comparable to those of free HSA.  相似文献   

5.
Hanwen Sun  Pan He 《Electrophoresis》2009,30(11):1991-1997
The binding of doxycycline to HSA under simulated physiological conditions (pH 7.4, 67 mM phosphate, I=0.17, drug concentration 100 μM, HSA concentration up to 475 μM, 36.5°C) was studied by CE‐frontal analysis. The number of primary binding sites, binding constant and physiological protein‐binding percentage were 1.9, 1.51×103 M?1 and 59.80%, respectively. In addition, the thermodynamic parameters including enthalpy change (ΔH), entropy change (ΔS) and free energy change (ΔG) of the reaction were obtained in order to characterize the acting forces between doxycycline and HSA. Furthermore, to better understand the nature of doxycycline–HSA binding and to get information about potential interaction with other drugs, displacement experiments were performed. The results showed that doxycycline binds at site II of HSA.  相似文献   

6.
The hydrolysis of bis(p‐nitrophenyl)phosphate (BNPP) catalyzed by N‐methyldiethanolamine‐Ce(III) complex in the presence and absence of cetyltrimethylammonium bromide (CTAB) and Brij35 surfactants at pH 7.20 and 303 K has been studied. The experimental results indicate that N‐methyldiethanolamine‐Ce(III) complex remarkably accelerates the hydrolysis of BNPP. The observed first‐order rate constant of the hydrolysis of BNPP catalyzed by N‐methyldiethanolamine‐Ce(III) complex at pH 7.20 and 303 K is 1.22 × 10?2 s?1, which is 1.09 × 109 times of that of spontaneous hydrolysis of BNPP at pH 7. It is close to the activity of natural enzyme. A general quantitative treatment of the catalytic reaction involved a ternary complex as MmLlS has also been proposed in this paper. Applying this method to the catalytic hydrolysis of BNPP, we have obtained its thermodynamic and kinetic parameters. CTAB and Brij35 surfactant micelles obviously influence the rate constants of the catalytic hydrolysis of BNPP. Brij35 micelles promote the catalytic hydrolysis of BNPP, while CTAB micelles inhibit it. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 687–692, 2004  相似文献   

7.
To derive accurately the thermodynamic parameters governing the hydrolysis of the lactone ring at physiological pH, a derivative spectrophotometric technique was used for the simultaneous estimation of lactone and carboxylate forms of the 10-hydroxy-camptothecin (10-HC). Validation of the analytical method was done with respect to reproducibility, percent recovery, and level of detection. Hydrolysis of the lactone ring of 10-HC followed a 1st order decay with a rate constant equal to (0.0281 ± 0.001) min−1 in PBS at pH 7.4 and at a temperature of 310 K. The activation energy for the hydrolysis reaction as calculated from the Arrhenius equation was (79.41 ± 0.92) kJ · mol−1, whereas the enthalpy and entropy of hydrolysis of 10-hydroxy-camptothecin were on average 12.45 kJ · mol−1 and 52.37 J · K−1 · mol−1, respectively. The positive enthalpy and entropy values of the 10-HC-lactone hydrolysis indicate that the reaction is endothermic and entropically driven.  相似文献   

8.
Abstract

The acid catalyzed rate for hydrolysis of methylphosponfluoridic acid has been determined at several hydrogen ion concentrations and temperatures. The acid hydrolysis is second order (in acid and substrate). Assumed rate expressions, observed rate constants, and hydrogen ion concentrations were used to calculate the thermodynamic equilibrium constant (K a=0.56) and rate constants for acid catalysis. The activation energy E a has been determined as 18.3 Kcal/mole. Finally, the acid catalyzed deuterolysis was determined to be about 1.47 times the rate of hydrolysis. The data suggest a two-step mechanism consisting of a rapid proton transfer, followed by slow hydration of the protonated complex.  相似文献   

9.
The synthesis of a variety of cyclic peptides from N‐phthaloyl‐protected di‐, tri‐, tetra‐, and pentapeptides with different aminocarboxylic acid tethers by photodecarboxylation – initiated by intramolecular electron transfer – has been explored in aqueous media. The progress and the chemoselectivity of the follow‐up processes after CO2 extrusion were traced by the respective pH/time‐profiles, as well as by the overall change in pH after completion of the reaction. The competition between cyclization and simple oxidative decarboxylation depends on spacer length and geometry, H‐bonding interaction between the electron accepting phthalimide C?O groups and amide H‐atoms, as well as the geometric reorganization coupled with the radical combination step and the formation of the lactam rings. With progressing reaction, hydrolysis of the phthalimide chromophore becomes an increasingly important side reaction due to the constant increase in pH. The use of phosphate‐buffered aqueous media consequently improved the cyclization yields. The ground‐state interactions between amide groups and the terminal COO? group with the imide C?O groups were studied for the model system [N‐(phthaloyl)glycyl]sarcosine ( 1 ) by NMR spectroscopy where the amide (E/Z)‐equilibrium depends on the presence of carboxylate vs. free carboxylic acid, demonstrating the role of H‐bonding and metal coordination.  相似文献   

10.
本文通过吸收和荧光光谱法研究了一种噻菁染料与人血清蛋白及牛血清蛋白的相互作用。吸收光谱数据表明,与血清蛋白结合后,噻菁染料单体的吸收峰发生红移,同时强度也有很大变化;还通过吸收光谱计算确定了噻菁染料与血清蛋白的结合位点数( n )。与人血清蛋白或牛血清蛋白结合后,噻菁染料的荧光量子产率增加。分析噻菁染料的荧光强度随溶液中血清蛋白浓度的变化得到了二者反应的表观结合常数( K a)和自由能变化( ΔG )。根据表观结合常数( K a)可以判断,人血清蛋白比牛血清蛋白与噻菁染料的结合更强。  相似文献   

11.
The kinetic and mechanistic study of Ag(I)‐catalyzed chlorination of linezolid (LNZ) by free available chlorine (FAC) was investigated at environmentally relevant pH 4.0–9.0. Apparent second‐order rate constants decreased with an increase in pH of the reaction mixture. The apparent second‐order rate constant for uncatalyzed reaction, e.g., kapp = 8.15 dm3 mol−1 s−1 at pH 4.0 and kapp. = 0.076 dm3 mol−1 s−1 at pH 9.0 and 25 ± 0.2°C and for Ag(I) catalyzed reaction total apparent second‐order rate constant, e.g., kapp = 51.50 dm3 mol−1 s−1 at pH 4.0 and kapp. = 1.03 dm3 mol−1 s−1 at pH 9.0 and 25 ± 0.2°C. The Ag(I) catalyst accelerates the reaction of LNZ with FAC by 10‐fold. A mechanism involving electrophilic halogenation has been proposed based on the kinetic data and LC/ESI/MS spectra. The influence of temperature on the rate of reaction was studied; the rate constants were found to increase with an increase in temperature. The thermodynamic activation parameters Ea, ΔH#, ΔS#, and ΔG# were evaluated for the reaction and discussed. The influence of catalyst, initially added product, dielectric constant, and ionic strength on the rate of reaction was also investigated. The monochlorinated substituted product along with degraded one was formed by the reaction of LNZ with FAC.  相似文献   

12.
Camptothecin (CPT) and its hydroxycamptothecin analogs are fluorescent compounds exhibiting strong anticancer properties. They exist in two forms: active lactone and inactive carboxylate. The deactivation proceeds via hydrolysis in neutral and base solutions. A serious limitation to the clinical application of CPT is the strong affinity of its carboxylate form to human serum albumin (HSA) which destabilizes its active lactone form. However, binding to membranes in blood improves the stability of the lactone form of CPT and its analogs. A high-throughput screening assay based on the steady-state fluorescence anisotropy method was used to determine the protein- and membrane-binding properties of 10 hydroxycamptothecin (10-OH-CPT), 7-ethyl-10-hydroxycamptothecin (SN-38) and 7-tert-butyldimethylsil-10-hydroxycamptothecin (DB-67). The relative affinities of hydroxycamptothecins to HSA and model membranes in the form of DMPC liposomes were determined, and DB-67 exhibited the most desirable properties including the highest affinity to membranes in its lactone form and low affinity to HSA in its carboxylate form.  相似文献   

13.
A multitechnique approach has been applied in order to identify the thermodynamic and kinetic parameters related to the regioselective hydrolysis of human serum albumin (HSA) promoted by the Wells–Dawson polyoxometalate (POM), K15H[Zr(α2‐P2W17O61)2]. Isothermal titration calorimetry (ITC) studies indicate that up to four POM molecules interact with HSA. While the first interaction site is characterized by a 1:1 binding and an affinity constant of 2×108 M ?1, the three remaining sites are characterized by a lower global affinity constant of 7×105 M ?1. The higher affinity constant at the first site is in accordance with a high quenching constant of 2.2×108 M ?1 obtained for fluorescence quenching of the Trp214 residue located in the only positively charged cleft of HSA, in the presence of K15H[Zr(α2‐P2W17O61)2]. In addition, EuIII luminescence experiments with an EuIII‐substituted POM analogue have shown the replacement of water molecules in the first coordination sphere of EuIII due to binding of the metal ion to amino acid side chain residues of HSA. All three interaction studies are in accordance with a stronger POM dominated binding at the positive cleft on the one hand, and interaction mainly governed by metal anchoring at the three remaining positions, on the other hand. Hydrolysis experiments in the presence of K15H[Zr(α2‐P2W17O61)2] have demonstrated regioselective cleavage of HSA at the Arg114?Leu115, Ala257?Asp258, Lys313?Asp314 or Cys392?Glu393 peptide bonds. This is in agreement with the interaction studies as the Arg114?Leu115 peptide bond is located in the positive cleft of HSA and the three remaining peptide bonds are each located near an upstream acidic residue, which can be expected to coordinate to the metal ion. A detailed kinetic study has evidenced the formation of additional fragments upon prolonged reaction times. Edman degradation of the additional reaction products has shown that these fragments result from further hydrolysis at the initially observed cleavage positions, indicating a fixed selectivity for K15H[Zr(α2‐P2W17O61)2].  相似文献   

14.
In this work, the interaction between indomethacin (IM) and human serum albumin (HSA) under simulative physiological conditions was investigated by the methods of fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and molecular modeling. The experiment results showed that the fluorescence quenching of HSA by IM was a result of the formation of an IM–HSA complex and the corresponding association constants (K a) between IM and HSA at four different temperatures were determined according to the modified Stern–Volmer equation. The resulting thermodynamic parameters ΔG, ΔH, and ΔS at different temperatures indicate that the hydrophobic force plays a major role for IM–HSA association, but hydrogen bonds also could not be excluded. A molecular modeling study further confirmed the binding mode and indicated that the binding of IM to HSA primarily takes place in sub-domain IIA (site I). The conformational investigation showed that the presence of IM decreased the α-helical content of HSA and induced slight unfolding of the polypeptides of protein, which confirmed that some microenvironmental and conformational changes occur for HSA molecules.  相似文献   

15.
The effect of the macrocyclic host, cucurbit[7]uril (CB7), on the photophysical properties of the 2‐(2′‐hydroxyphenyl)benzimidazole (HPBI) dye have been investigated in aqueous solution by using ground‐state absorption and steady‐state and time‐resolved fluorescence measurements. All three prototropic forms of the dye (cationic, neutral, and anionic) form inclusion complexes with CB7, with the largest binding constant found for the cationic form (K≈2.4×106 M ?1). At pH≈4, the appearance of a blue emission band upon excitation of the HPBI cation in the presence of CB7 indicates that encapsulation into the CB7 cavity retards the deprotonation process of the excited cation, and hence reduces its subsequent conversion to the keto form. Excitation of the neutral form (pH≈8.5), however, leads to an increase in the keto form fluorescence, indicating an enhanced excited‐state intramolecular proton‐transfer process for the encapsulated dye. In both the ground and excited states, the two pKa values of the HPBI dye show upward shifts in the presence of CB7. The prototropic equilibrium of the CB7‐complexed dye is represented by a six‐state model, and the pH‐dependent changes in the binding constants have been analyzed accordingly. It has been observed that the calculated pKa values using this six‐state model match well with the values obtained experimentally. The changes in the pKa values in the presence of CB7 have been corroborated with the modulation of the proton‐transfer process of the dye within the host cavity.  相似文献   

16.
Hydrolysis of Amides of Phospholinic Acid The acid catalysed hydrolysis of (= OAP, R = organic substituent) has been investigated kinetically. Provided the pH remains constant, the hydrolysis is a first order reaction. From the temperature dependance of the rate constant the activation energy Ea as well as the thermodynamic data ΔH* and ΔS* have been calculated. In comparison to the compound with R = H aromatic substituents and additional the t-butyl group enhance Ea whilst aliphatic substituents included the benzyl group diminish Ea. The first step of the reaction is a protonation at the oxygen or nitrogen resulting in the formation of an equilibrium. After the determination of the basicity constant KA of some OAPs it was possible to calculate the respective rate constants of the rate determining step of the reactions and the corresponding thermodynamic data EF, ΔH and ΔS. It is assumed that the mechanism of the hydrolysis takes place according to the same scheme which has been assumed for the hydrolysis of cyclic esters of the phosphinic acid by Ugi [1] and colaborators.  相似文献   

17.
The objective of this work was the synthesis of serum albumin targeted, GdIII‐based magnetic resonance imaging (MRI) contrast agents exhibiting a strong pH‐dependent relaxivity. Two new complexes ( Gd‐glu and Gd‐bbu ) were synthesized based on the DO3A macrocycle modified with three carboxyalkyl substituents α to the three ring nitrogen atoms, and a biphenylsulfonamide arm. The sulfonamide nitrogen coordinates the Gd in a pH‐dependent fashion, resulting in a decrease in the hydration state, q, as pH is increased and a resultant decrease in relaxivity (r1). In the absence of human serum albumin (HSA), r1 increases from 2.0 to 6.0 mM ?1 s?1 for Gd‐glu and from 2.4 to 9.0 mM ?1 s?1 for Gd‐bbu from pH 5 to 8.5 at 37 °C, 0.47 T, respectively. These complexes (0.2 mM ) are bound (>98.9 %) to HSA (0.69 mM ) over the pH range 5–8.5. Binding to albumin increases the rotational correlation time and results in higher relaxivity. The r1 increased 120 % (pH 5) and 550 % (pH 8.5) for Gd‐glu and 42 % (pH 5) and 260 % (pH 8.5) for Gd‐bbu . The increases in r1 at pH 5 were unexpectedly low for a putative slow tumbling q=2 complex. The Gd‐bbu system was investigated further. At pH 5, it binds in a stepwise fashion to HSA with dissociation constants Kd1=0.65, Kd2=18, Kd3=1360 μM . The relaxivity at each binding site was constant. Luminescence lifetime titration experiments with the EuIII analogue revealed that the inner‐sphere water ligands are displaced when the complex binds to HSA resulting in lower than expected r1 at pH 5. Variable pH and temperature nuclear magnetic relaxation dispersion (NMRD) studies showed that the increased r1 of the albumin‐bound q=0 complexes is due to the presence of a nearby water molecule with a long residency time (1–2 ns). The distance between this water molecule and the Gd ion changes with pH resulting in albumin‐bound pH‐dependent relaxivity.  相似文献   

18.
Enzymatic hydrolysis of protein: Mechanism and kinetic model   总被引:1,自引:0,他引:1  
The bioreaction mechanism and kinetic behavior of protein enzymatic hydrolysis for preparing active peptides were investigated to model and characterize the enzymatic hydrolysis curves. Taking into account single-substrate hydrolysis, enzyme inactivation and substrate or product inhibition, the reaction mechanism could be deduced from a series of experimental results carried out in a stirred tank reactor at different substrate concentrations, enzyme concentrations and temperatures based on M-M equation. An exponential equation dh/dt = aexp(-bh) was also established, where parameters a and b have different expressions according to different reaction mechanisms, and different values for different reaction systems. For BSA-trypsin model system, the regressive results agree with the experimental data, i.e. the average relative error was only 4.73%, and the reaction constants were determined as K m = 0.0748 g/L, K s = 7.961 g/L, k d = 9.358/min, k 2 = 38.439/min, E a = 64.826 kJ/mol, E d = 80.031 kJ/mol in accordance with the proposed kinetic mode. The whole set of exponential kinetic equations can be used to model the bioreaction process of protein enzymatic hydrolysis, to calculate the thermodynamic and kinetic constants, and to optimize the operating parameters for bioreactor design. __________ Translated from Journal of Tianjin University, 2005, 38(9) (in Chinese)  相似文献   

19.
The thermodynamic parameters of interaction between theophylline and Human Serum Albumin (HSA) in buffer solution (30 mM) of pH = 7 at 27 °C was investigated by isothermal titration calorimetry (ITC). The thermodynamic quantities of the binding mechanism, the number of binding sites (g), the dissociation binding constant (K d), the molar enthalpy of binding (ΔΗ) and other thermodynamic parameters can be obtained by the extended solvation theory.  相似文献   

20.
New trans‐2‐hydroxychalcones bearing a carboxylate group at position 2′ ( Ct ?) were synthesized (compounds 2 and 3 ). These compounds lead to a network of chemical reactions depending on pH value, light, and solvent. In water, when the pH value is lowered, the ionized trans‐chalcone is protonated and the flavylium cation A H+ is formed at very acidic pH values through hemiketal B and cis‐chalcone Cc , with global acidity constants of pKa ≤?1 and ≈0.1, respectively, for 2 and 3 . The electron‐acceptor character of the carboxylic substituent not only increases the observed acidity of the flavylium cation, but also decreases the rate of the ring‐opening/‐closing from a subsecond timescale to hours relative to model compound 1 (without carboxylate). The photochemistry of the network was studied in detail by means of continuous irradiation, monitored by UV/Vis absorption and 1H and 13C NMR spectroscopic analysis. Although compound 3 is only slightly photoactive, compound 2 ( Ct? ) reacts in aqueous solutions (λirr=313 nm) to form B? and Cc? , with a global quantum yield of 0.15, and fully reverts back to Ct? with a rate constant of k=6.7×10?5 s?1. The flavylium cation is no longer formed in methanol, and irradiation of Ct? leads to the formation of B ? and the new lactone‐trapped chromene species La . The formation of La takes place through a sequence of three photochemical steps: photoisomerization of Ct ?, photo‐ring‐closing reaction of Cc ?, and photolactonization of B ?. Only the cis/trans isomerization and ring‐closing reactions are thermally reversible on a timescale of seconds and hours, respectively. A photochromic system was achieved in rigid matrices of methanol (at 77 K) and 1‐dodecanol (5 °C) by irradiating lactone La to give a red ortho‐quinone allide through a photo‐ring‐opening reaction; the color disappears with a rate constant of k=1.25×10?2 s?1 in 1‐dodecanol at 5 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号