首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper describes the isolation of flavonoids and other aromatic compounds from an ethyl acetate extract of leaves of Siparuna glycycarpa using stepwise elution counter‐current chromatography (CCC). The elution profile yielded the following compounds: diglycosylated flavonoids, quercetin 3‐O‐rutinoside and quercetin 7‐O‐rutinoside, followed by monoglycosylated flavonoids, kaempferol‐3‐O‐β‐glucopyranoside, kaempferol‐3‐O‐β‐rhamnopiranoside, kaempferol‐3‐O‐β‐6′′(p‐coumaroyl) glucopyranoside, and quercetin‐3‐O‐β‐glucopyranoside, and then free phenolics, protocatechuic acid, and 2′,6′‐dihydroxy‐4, 4′‐dimethoxydihydrochalcone, which shows that this type of elution covers a broader range of polarity than the traditional isocratic mode. This makes it more suitable to perform separations of mixtures containing large differences in hydrophobicity. A GC analysis of a blank CCC run was performed to determine if changes in the mobile phase composition affect the chromatographic process. Results showed a gradual variation of the composition of the mobile phase emerging after the step gradient, favoring the selectivity of the solvent system.  相似文献   

2.
Three flavonoids - 2′,4′,6′-trihydroxy-4′-O-β-d-glucopiranosyl dihydrochalcone, 1, pinocembrin-7-O-(-neohesperidoside, 2 and pinocembrin-7-O-(-(6″-O-acetyl) neohesperidoside, 3 - were successfully isolated from the EtOAc extract of leaves of Sparattosperma leucanthum (Vell.) K. Schum (Bignoniaceae) using a two-step counter-current chromatography (CCC). Two different CCC machines were used, with different column axes (P.C. Inc., vertical orientation axis and AECS Quattro HTPrep, horizontal orientation axis). Detailed studies of flavonoids behaviour in several solvent systems made possible the use of the best system for their isolation. HEMWat and its modifications - exchange of alcohol and addition of a fifth solvent - were tested for isolation of the three compounds in a single run, but good K and α values were not achieved. So, HEMWat 4:10:4:10, with upper phase as mobile, was used to isolate compound 3. A mixture of compounds 1 and 2 was recovered and submitted to a new CCC fractionation using a more polar solvent system: EBuWat 8:2:10, upper phase as mobile. Butironitrile-acetonitrile-water (BuCN-ACN-H2O) 5:10:10, upper phase as mobile, was also used for the isolation of the mixture containing compounds 1 and 2, in order to increase the solubility of the compounds in the CCC solvent system. It is the first time that the system BuCN-ACN-H2O is described in literature.  相似文献   

3.
The biologically active pricipals in nature are frequently present as only a few parts per million of complex mixtures of non-volatile components and often have limited stability. Their isolation often requires the application of all available techniques, such as adsorption chromatography, ion exchange procedures, size exclusion techniques, and solvent partition methods consistent with their physical properties and stability. The process of countercurret chromatography is essentially liquid-liquid chromatography in which the stationary liquid bed is retained in the column by a force field rather than by a solid supporting matrix. Adsorption effects are thereby eliminated. The technique is particularly advantageous in the preparative separation of milligram to gram quantities of polar and labile organic compounds and bio-particulate materials such as cells and cell fragments. Virtually any twophase solvent system, either aqueous or non-aqueous may be employed. Countercurrent chromatography (CCC) provides a convenlent alternative to adsorption chromatography for fractionation of natural products or other complex mixtures. In some cases, this high resolution method offers advantages with regard to the avoidance of contamination from solid adsorbents, versatility, and relatively inexpensive operation. The article covers some of the applications, selection of solvents, and advantages of CCC.  相似文献   

4.
In this paper, an effective method combing fast elution‐extrusion counter‐current chromatography (CCC) and LC/MS for rapid screening of antioxidative phenolic compounds in Chinese Rhubarb is presented. An integrated three‐coil CCC column (40 mL each coil) was used to accomplish the optimization of biphasic liquid system. In a single run (approximately 40 min), the solvent system composed of n‐hexane/ethyl acetate/methanol/water (1:1:1:1, v/v) was selected as optimum CCC liquid system for fast fractionation of the crude ethanol extract. With a 140 mL‐capacity CCC instrument, 100 mg Chinese Rhubarb extract was separated under the optimized conditions, producing six fractions in only 100 min. The quantities of each fraction were ~15 mg. In addition, each fraction was subjected to antioxidant activity assay and characterized by LC/MS analysis. Fifty compounds, including phenolic acids, phenolic glucosides and hydroxyanthraquinones, were detected by LC/MS/MS analysis. As a result, gallic acid together with Fr I showed excellent antioxidant activity, which was well consistent with previous studies and exhibited great potential for natural drug discovery program of the present method.  相似文献   

5.
Liang J  Yang Z  Cao X  Wu B  Wu S 《Journal of chromatography. A》2011,1218(36):6191-6199
In this work, we have established a new stop-and-go two-dimensional chromatography coupling of counter-current chromatography and liquid chromatography (2D CCC × LC) for the preparative separation of two novel antioxidant flavonoids from the extract of alfalfa (Medicago sativa L.). The CCC column has been used as the first dimension to purify the target flavonoids using a solvent system of isopropanol and 20% sodium chloride aqueous solution (1:1, v/v) with the stop-and-go flow technique, and the LC column packed with macroporous resin has been employed as the second dimension for on-line absorption, desalination and desorption of the targeting effluents purified from the first CCC dimension. As a result, two novel flavonoids, 6,8-dihydroxy-flavone-7-O-β-D-glucuronide (15.3 mg) and 6-methoxy-8-hydroxy-flavone-7-O-β-D-glucuronide (13.7 mg), have been isolated from 126.8 mg of crude sample pre-enriched by macroporous resin column. Their structures have been identified by electrospray ionization mass spectrometry (ESI-MS), electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) and one- and two-dimensional nuclear magnetic resonance spectra (1D and 2D NMR). Further antioxidant assays showed that the first component possess a strong antioxidant activity. All the results demonstrated that the stop-and-go 2D CCC × LC method is very efficient for the separation of flavonoids of alfalfa and it can also be applied to isolate other comprehensive multi-component natural products.  相似文献   

6.
Separation of minor compounds especially with similar polarities and structures from complex samples is a challenging work. In the present study, an efficient method was successfully established by macroporous resin column chromatography, medium‐pressure liquid chromatography, and high‐speed countercurrent chromatography for separation of four minor flavonoids from barley seedlings. Macroporous resin column chromatography and medium‐pressure liquid chromatography were used for enrichment of these four flavonoids. High‐pressure liquid chromatography analysis showed the total content of these four flavonoids increased from 2.2% in the crude extract to 95.3% in the medium‐pressure liquid chromatography fraction. It was indicated that the combination of macroporous resin column chromatography and medium‐pressure liquid chromatography could be a practicable strategy for enrichment of minor compounds from complex sample. Then, high‐speed countercurrent chromatography was employed for separation of these four flavonoids using ethyl acetate/n‐butanol/water (0.1% glacial acetic acid) (4:1:5, v/v/v) as solvent system. As a result, four flavonoids including two isomers with purities higher than 98% were obtained. Interestingly, two flavonoids existing in one high‐pressure liquid chromatography peak were also successfully separated. All these indicated high‐speed countercurrent chromatography had great potential for separation of compounds with similar structures and polarities. This study provides a reference for efficient enrichment and separation of minor compounds from complex sample.  相似文献   

7.
Hydroxyl radicals are the most reactive free radical of human body, a strong contributor to tissue damage. In this study, liquid chromatography coupled to electrospray ionization mass spectrometry was applied to screen and identify hydroxyl radical scavengers from the total flavonoids of Ginkgo biloba leaves, and high‐performance counter current chromatography was used to separate and isolate the active compounds. Furthermore, molecular devices were used to determine hydroxyl radical scavenging activities of the obtained hydroxyl radical scavengers and other flavonoids from G. biloba leaves. As a result, six compounds were screened as hydroxyl radical scavengers, but only three flavonoids, namely, rutin, cosmos glycosides and apigenin‐7‐O‐Glu‐4’‐O‐Rha, were isolated successfully from total flavonoids by high‐performance counter current chromatography. The purities of the three obtained compounds were over 90%, respectively, as determined by liquid chromatography. Molecular devices with 96‐well microplates evaluation indicated that the 50% scavenging concentration values of screened compounds were lower than that of other flavonoids, they performed greater hydroxyl radical scavenging activity, and the evaluation effects were consistent with the liquid chromatography with mass spectrometry screening results. Therefore, chromatography combined with molecular devices is a feasible and an efficient method for systematic screening, identification, isolation, and evaluation of bioactive components in mixture of botanical medicines.  相似文献   

8.
Alkaloids represent a most widespread group of bioactive natural products. Because of their alkalinity and structural diversity, the fractionation and purification of the alkaloids from herbs can often present a number of practical difficulties using the conventional chromatographic techniques. High-speed counter-current chromatography (HSCCC) is a liquid-liquid partition chromatography with a support-free liquid stationary phase, and is gaining more and more popularity as a viable separation technique for bioactive compounds from natural resources. In the present review, focus is placed on the separation of alkaloids by both conventional HSCCC and pH-zone-refining counter-current chromatography (CCC) techniques from herbs. The review presents the separation of over 120 different alkaloid compounds from more than 30 plant species by the conventional HSCCC and pH-zone-refining CCC. Based on the data from the literature, the proper solvent systems for the separation of alkaloids by the conventional HSCCC and pH-zone-refining CCC are also summarized.  相似文献   

9.
Tanshen, the rhizome of Salvia miltiorrhiza Bunge, is a famous Traditional Chinese Medicine for multiple therapeutic remedies. This work presents the isolation and purification of tanshinone I and tanshinone IIA from the extract of the rhizome of S. miltiorrhiza by using high‐speed counter‐current chromatography (CCC) without presaturation of the two‐phase solvent mixture. The CCC method combines the results of CCC solvent system selection and components analyses of solvent mixture by GC, and thus it is possible to add accurately each individual solvent to prepare single saturated solvent phase without presaturation. The optimum CCC solvent system is a system of hexane–ethyl acetate–ethanol–water (8:2:7:3, v/v), which has been determined by usual solvent system selection and CCC runs. As a result, over 98% pure tanshinone IIA and over 94% pure tanshinone I have been obtained by using less solvent volume. Their structures have been identified by ESI‐MS, NMR spectra.  相似文献   

10.
Experiments were performed to evaluate whether counter-current chromatography (CCC) could function as an alternative purification method to reversed-phase high-performance liquid chromatography (RP-HPLC) and normal-phase supercritical fluid chromatography (SFC). RP-HPLC and SFC are the routine methods currently used in our high-throughput purification (HTP) facility for the purification of high-throughput organic synthesis (HTOS) libraries and medicinal chemistry reaction mixtures. Pre-equilibration of the solvent mixture layers was not mandatory for effective chromatography when hexanes–ethyl acetate–methanol–water (HEMW) solvent mixtures were used. Key to the use of CCC for high-throughput applications is the ability to effectively select a solvent system appropriate to each library member. Pilot-scale CCC elution time was used to estimate a starting solvent ratio and RP-HPLC retention time was then used to adjust solvent ratios within a particular library. It was also found that dimethyl sulfoxide (DMSO) and DMSO–methanol were suitable as sample injection solvents when using the HEMW solvent systems.  相似文献   

11.
In this paper, macroporous resin column chromatography and counter‐current chromatography (CCC) were applied for large‐scale preparative separation of three flavonoids from the flower of Daphne genkwa, a famous Chinese medicinal herb. Nine kinds of resins were investigated by adsorption and desorption tests and D101 macroporous resin was selected for the first cleaning‐up, in which 40% aqueous ethanol was used to remove the undesired constituents and 90% aqueous ethanol was used to elute the targets. The crude extract after the first step was directly subjected to the preparative CCC purification using the solvent system composed of n‐hexane–ethyl acetate–methanol–water (4:5:4:5, v/v). The compounds apigemin (823 mg), 3‐hydroxyl‐genkwanin (842 mg) and genkwanin (998 mg) with the purities of 98.79, 97.71 and 93.53%, respectively, determined by HPLC were produced from 3‐g crude extract only in one CCC run. Their chemical structures were identified by MS, UV and the standards.  相似文献   

12.
Counter-current chromatography (CCC) is a unique support-free liquid-liquid partition chromatography winning wide applications in the separation of various components from natural or synthetic mixtures. It has been one of the prime methods for isolating compounds from Traditional Chinese Medicines (TCM) and other comprehensive natural products. Although early CCC models produced a long-standing false image that CCC is a time-consuming technique, rapid and high-performance CCC devices and methods for high-throughput analysis of natural mixtures have been advanced. For instances, multi-channel CCC, dual CCC, elution-extrusion CCC, and solvent simplification protocols can provide high-throughput CCC analysis and produce high purity of compounds or large natural product libraries for drug discovery. This review summarizes the recent advancements of CCC in the high-throughput analysis of natural product with an emphasis on the developments of instruments and methods.  相似文献   

13.
An efficient combination strategy based on high‐speed shear dispersing emulsifier technique and high‐performance countercurrent chromatography was developed for on‐line extraction and isolation of carotenoids from the fruits of Lycium barbarum. In this work, the high‐speed shear dispersing emulsifier technique has been employed to extract crude extracts using the upper phase of high‐performance countercurrent chromatography solvent system composed of n‐hexane?dichloromethane?acetonitrile (10:4:6.5, v/v) as the extraction solvent. At the separation stage, the high‐performance counter‐current chromatography process adopts elution–extrusion mode and the upper phase of the solvent system as stationary phase (reverse‐phase mode). As a result, three compounds including zeaxanthin, zeaxanthin monopalmitate, and zeaxanthin dipalmitate with purities of 89, 90, and 93% were successfully obtained in one extraction‐separation operation within 120 min. The targeted compounds were analyzed and identified by high‐performance liquid chromatography, mass spectrometry, and NMR spectroscopy. The results indicated that the present on‐line combination method could serve as a simple, rapid, and effective way to achieve weak polar and unstable compounds from natural products.  相似文献   

14.
A novel on‐line three‐dimensional liquid chromatography method was developed to separate four main flavonoids from Rhodiola rosea. Ethyl acetate/0.5 mol/L ionic liquid 1‐butyl‐3‐methylimidazolium chloride aqueous solution was selected as the solvent system. In the first‐dimension separation, the target flavonoids were entrapped and subsequently desorbed into the second‐dimension high‐speed countercurrent chromatographic column for separation. In the third‐dimension chromatography, the residual ionic liquid in the four separated flavonoids was removed and the used ionic liquid was recovered. As a result, 35.1 mg of compound 1 , 20.4 mg of compound 2 , 8.5 mg of compound 3, and 10.6 mg of compound 4 were obtained from 1.53 g R. rosea extract. They were identified as rhodiosin, rhodionin, herbacetin, and kaempferol, respectively. The recovery of ionic liquid reached 99.1% of the initial amount. The results showed that this method is a powerful technology for the separation of R. rosea flavonoids and that the ionic‐liquid‐based solvent system has advantages over traditional solvent systems in renewable and environmentally friendly properties.  相似文献   

15.
An orthogonal (71.9%) off‐line preparative two‐dimensional normal‐phase liquid chromatography/reversed‐phase liquid chromatography method coupled with effective sample pretreatment was developed for separation and purification of flavonoids from licorice. Most of the nonflavonoids were firstly removed using a self‐made Click TE‐Cys (60 μm) solid‐phase extraction. In the first dimension, an industrial grade preparative chromatography was employed to purify the crude flavonoids. Click TE‐Cys (10 μm) was selected as the stationary phase that provided an excellent separation with high reproducibility. Ethyl acetate/ethanol was selected as the mobile phase owing to their excellent solubility for flavonoids. Flavonoids co‐eluted in the first dimension were selected for further purification using reversed‐phase liquid chromatography. Multiple compounds could be isolated from one normal‐phase fraction and some compounds with bad resolution in one‐dimensional liquid chromatography could be prepared in this two‐dimensional system owing to the orthogonal separation. Moreover, this two‐dimensional liquid chromatography method was beneficial for the preparation of relatively trace flavonoid compounds, which were enriched in the first dimension and further purified in the second dimension. Totally, 24 flavonoid compounds with high purity were obtained. The results demonstrated that the off‐line two‐dimensional liquid chromatography method was effective for the preparative separation and purification of flavonoids from licorice.  相似文献   

16.
A comparative study of preparative isolation and purification of the phenolic compounds magnolol and honokiol from the Chinese medicinal plant Magnoliae officinalis by upright counter-current chromatography (CCC) and semi-preparative HPLC is presented. The comparison reveals that with a two-phase solvent system composed of light petroleum (bp 60-90 degrees C)-ethyl acetate-tetrachloromethane-methanol-water (1:1:8:6:1, v/v), 1250 mg of honokiol and 520 mg of magnolol, with a purity of 98.7 and 99.5%, respectively, were obtained from 2.0 g of a crude sample of Magnoliae officinalis in a single CCC separation. In contrast, semi-preparative HPLC allowed isolation and purification of these two phenolic compounds with significantly lower productivity and higher solvent consumption. Structures of the purified compounds were identified by 1H and 13C NMR.  相似文献   

17.
Recycling counter‐current chromatography (CCC) together with step‐gradient CCC and medium‐pressure liquid chromatography (MPLC) was employed to separate nine anthraquinone compounds from Cassia obtusifolia L. in this study. The results showed that recycling CCC is a powerful tool for compounds that are difficult to separate with common elution mode. CCC was the better option for crude material while MPLC had advantage for the final tuning. The combination of recycling CCC and MPLC could simplify the method exploring process in the separation process. The structures of these compounds were identified according to their mass spectra, by 1H‐NMR and compared with standard compounds.  相似文献   

18.
Wu S  Sun C  Cao X  Zhou H  Hong Z  Pan Y 《Journal of chromatography. A》2004,1041(1-2):153-162
Preparative counter-current chromatography (CCC) isolation of liensinine and its analogues, isoliensinine and neferine from embryo of the seed of Nelumbo nucifera GAERTN. has been successfully performed for the first time using upright coil planet centrifuge with four multilayer coils connected in series with 1600 mL capacity. Two kinds of two-phase solvent systems were applied to preparative CCC isolation. The first was the system composed of light petroleum (b.p. 60-90 degrees C)-ethyl acetate-tetrachloromethane-chloroform-methanol-water (1:1:4:4:6:2, v/v) which was very suitable for fast and small-scale CCC isolation. The second was the system composed of ethyl acetate-tetrachloromethane-methanol-water (1:6:4:1, v/v), which was the optimum for large-scale CCC isolation. Using the first system, 1102 mg of the crude alkaloid was purified in one-step separation of 150 min, yielding 350 mg neferine, 100 mg isoliensinine and 95 mg liensinine with over 95% purity. While using the second solvent system, 5850 mg of the crude alkaloid was purified in one-step separation of 9 h, yielding 2545 mg neferine, 698 mg isoliensinine and 650 mg liensinine with over 97% purity. Structures of the compounds were identified by electrospray ionization multiple mass spectrometry, one- and two-dimensional NMR.  相似文献   

19.
Dual high-speed countercurrent chromatography (dual CCC) literally permits countercurrent flow of two immiscible solvent phases continuously through the coiled column for separation of solutes according to their partition coefficients. Application of this technique has been successfully demonstrated by separation of analytes by gas–liquid and liquid–liquid two-phase systems. However, the method cannot be directly applied to the system with a set of coiled columns connected in series, since the countercurrent process is interrupted at the junction between the columns. However, this problem can be solved by intermittent dual CCC by eluting each phase alternately through the opposite ends of the separation column. This mode of application has an advantage over the conventional dual CCC in that the method can be applied to all types of CCC systems including hydrostatic equilibrium systems such as toroidal coil CCC and centrifugal partition chromatography. Recently, the application of this method to high-speed CCC (hydrodynamic system) has been demonstrated for separation of natural products by Hewitson et al. using a set of conventional multilayer coil separation columns connected in series. Here, we have developed a mathematical model for this intermittent dual CCC system to predict retention time of the analytes, and using a simplified model system the validity of the model is justified by a series of basic studies on both hydrodynamic and hydrostatic CCC systems with a computer-programmed single sliding valve. The present method has been successfully applied to spiral tube assembly high-speed CCC (hydrodynamic system) and toroidal coil CCC (hydrostatic system) for separation of DNP-amino acid samples with two biphasic solvent systems composed of hexane–ethyl acetate–methanol–0.1 M hydrochloric acid (1:1:1:1 and 4:5:4:5, v/v).  相似文献   

20.
Countercurrent chromatography (CCC) is a support-free liquid-liquid chromatography using centrifugal fields to hold the liquid stationary phase. CCC has been widely applied in the separation of various natural and synthetic components using a variety of biphasic liquid systems. The related hexane or heptane/ethyl acetate/methanol or ethanol/water biphasic liquid systems demonstrated their significance in CCC. Gradient is difficult in CCC since any composition change in one phase induces a composition change of the other phase to maintain phase equilibrium. This work provides a new insight into linear gradient elution in CCC that is feasible with some biphasic liquid systems such as selected compositions of the hexane/ethyl acetate/ethanol/water systems. The equations modeling solute motion inside the CCC column are proposed. Particular compositions of the liquid system, namely the hexane/ethyl acetate/ethanol/water 8:2:E:W compositions with E + W = 10, were studied from W = 1 to 9. They showed moderate changes in the upper organic phase compositions. The model is tested with the separation of tanshinones from the rhizome of Salvia miltiorrhiza Bunge. Different linear solvent gradient profiles were experimentally performed between 8:2:5:5 and 8:2:3:7 compositions and the results were evaluated using the proposed model. Five tanshinones including dihydrotanshinone I, cryptotanshinone, tanshinone I, 1,2-dihydrotanshinquinone, and tanshinone IIA have been successfully separated (>95% purities) using a gradient profile optimized by the developed model. The gradient model can be used only with biphasic liquid systems in which one phase shows minimum composition changes when the other phase composition changes notably. This case is not the general case for biphasic liquid systems but can be applied with specific compositions of the quaternary hexane or heptane/ethyl acetate/methanol or ethanol/water most useful CCC liquid systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号