首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(acetyl ethylene oxide acrylate‐co‐vinyl acetate) (P(AEOA‐VAc)) was synthesized and used as a host for lithium perchlorate to prepare an all solid polymer electrolyte. Introduction of carbonyl groups into the copolymer increased ionic conductivity. All solid polymer electrolytes based on P(AEOA‐VAc) at 14.3 wt% VAc with 12wt% LiClO4 showed conductivity as high as 1.2 × 10?4 S cm?1 at room temperature. The temperature dependence of the ionic conductivity followed the VTF behavior, indicating that the ion transport was related to segmental movement of the polymer. FTIR was used to investigate the effect of the carbonyl group on ionic conductivity. The interaction between the lithium salt and carbonyl groups accelerated the dissociation of the lithium salt and thus resulted in a maximum ionic conductivity at a salt concentration higher than pure PAEO‐salts system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
A nanocomposite polymer electrolyte consisting of 49% poly(methyl methacrylate)-grafted natural rubber (MG49) as a polymer matrix, lithium tetrafluoroborate (LiBF4) as a dopant salt, and titanium dioxide (TiO2) as an inert ceramic filler was prepared by solution casting technique. The ceramic filler, TiO2, was synthesized in situ by a sol?Cgel process. The ionic conductivity was investigated by alternating current impedance spectroscopy. X-ray diffraction (XRD) was used to determine the structure of the electrolyte, and its morphology was examined by scanning electron microscopy (SEM). The highest conductivity, 1.4?×?10?5 S cm?1 was obtained at 30 wt.% of LiBF4 salt addition with 6 wt.% of TiO2 filler content. Ionic conductivity was found to increase with the increase of salt concentration. The optimum value of conductivity was found at 6 wt.% of TiO2. The XRD analysis revealed that the crystalline phase of the polymer host slightly decreased with the addition of salt and filler. The SEM analysis showed that the smoother the surface of the electrolyte, the higher its conductivity.  相似文献   

3.
A series of aliphatic polyesters of sebacoyl chloride and poly(ethylene glycol) containing a different number of ethylene oxide groups was synthesized and characterized. These polyesters were complexed with lithium perchlorate to obtain a new class of polymer electrolyte. The relationships between the structure and properties of these polymer electrolytes were investigated. The main factor that affects the ionic conductivity in these systems was found to be the solvating capacity of the polyester for the lithium salt. These polymer electrolytes showed ionic conductivities up to 10?5 ? 10?4 S/cm at 25°C. The mechanical strength was improved by cross-linking, and the cross-linked polyester complexed with a LiCIO4 salt showed an ionic conductivity of 2 × 10?5 S/cm at room temperature. 7Li NMR spin-spin relaxation and dielectric relaxation studies were also carried out to investigate the local environments and dynamics of ions in the polymer electrolytes. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
New solid polymer electrolytes are developed for a lithium power source used at the temperatures up to 100°C. Polyester diacrylate (PEDA) based on oligohydroxyethylacrylate and its block copolymers with polyethylene glycol were offered for polymer matrix formation. The salt used was LiClO4. The ionic conductivity of electrolytes was measured in the range of 20 to 100°C using the electrochemical impedance method. It is shown that the maximum conductivity in the whole temperature range is characteristic of the electrolyte based on the PEDA copolymer and polyethylene glycol condensation product (2.8 × 10?6 S cm?1 at 20°C, 1.8 × 10?4 S cm?1 at 95°C).  相似文献   

5.
A new network polymer electrolyte matrix with polyether in the side chains and main chains was synthesized by the azo-macroinitiator method and urethane reaction. The macroinitiator, polymer and network polymer were confirmed by Fourier-transform infrared (FT-IR) spectroscopy and 1H NMR. FT-IR was also used to study the environment of lithium ions doped in these network polymer electrolytes. Three important groups are considered: N-H, carbonyl, and ether groups. The thermal properties of the polymer electrolytes were measured by differential scanning calorimetry and thermogravimetric analysis. The Tg value of this polymer is less than that of a general comb-like polymer. Added lithium ions interact with the oxygen atoms on ether groups, causing the Tg of the polymer electrolyte to increase. Moreover, the interaction between lithium ions and ether groups decreases the decomposition temperature of the polymer. The conductivity measured by AC impedance reached a maximum of 10−4 S cm−1. A plot of conductivity vs. temperature fit the Vogel-Tamman-Fulcher equation, indicating that ionic mobility in this network polymer electrolyte is coupled to segmental chain movements.  相似文献   

6.
The preparation and characterization of blended solid polymer electrolyte 49% poly(methyl methacrylate)-grafted natural rubber (MG49):poly(methyl methacrylate) (PMMA) (30:70) were carried out. The effect of lithium tetrafluoroborate (LiBF4) concentration on the chemical interaction, structure, morphology, and room temperature conductivity of the electrolyte were investigated. The electrolyte samples with various weight percentages (wt.%) of LiBF4 salt were prepared by solution casting technique and characterized by Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy. Infrared analysis demonstrated that the interaction between lithium ions and oxygen atoms occurred at symmetrical stretching of carbonyl (C=O) (1,735 cm?1) and asymmetric deformation of (O–CH3) (1,456 cm?1) via the formation of coordinate bond on MMA structure in MG49 and PMMA. The reduction of MMA peaks intensity at the diffraction angle, 2θ of 29.5° and 39.5° was due to the increase in weight percent of LiBF4. The complexation occurred between the salt and polymer host had been confirmed by the XRD analysis. The semi-crystalline phase of polymer host was found to reduce with the increase in salt content and confirmed by XRD analysis. Morphological studies by SEM showed that MG49 blended with PMMA was compatible. The addition of salt into the blend has changed the topological order of the polymer host from dark surface to brighter surface. The SEM analyses supported the enhancement of conductivity with the addition of salt. The conductivity increased drastically from 2.0 to 3.4?×?10?5 S cm?1 with the addition of 25 wt.% of salt. The increase in the conductivity was due to the increasing of the number of charge carriers in the electrolyte. The conductivity obeys Arrhenius equation in higher temperature region from 333 to 373 K with the pre-exponential factor σ o of 1.21?×?10?7 S cm?1 and the activation energy E a of 0.46 eV. The conductivity is not Arrhenian in lower temperature region from 303 to 323 K.  相似文献   

7.
The growth of lithium dendrites and low coulombic efficiency restrict the development of Li metal anodes. Polymer electrolytes are expected to be promising candidates to solve the issue, but ways to obtain a polymer electrolyte that integrates high ionic conductivity and high mechanical toughness is still challenging. By introducing a double polymer network into the electrolyte design to reshape it, a tough polymer electrolyte was developed with high conductivity, and stable operation of lithium metal anodes was further realized. The double network (DNW) gel electrolyte has high modulus of 44.3 MPa and high fracture energy of 69.5 kJ m?2. The conductivity of DNW gel is 0.81 mS cm?1 at 30 °C. By using this gel electrolyte design, the lithium metal electrode could be cycled more than 400 times with a coulombic efficiency (CE) as high as 96.3 % with carbonate‐based electrolytes.  相似文献   

8.
Ionic liquid monomer couples were prepared by the neutralization of 1‐vinylimidazole with vinylsulfonic acid or 3‐sulfopropyl acrylate. These ionic liquid monomer couples were viscous liquid at room temperature and showed low glass transition temperature (Tg) at ?83 °C and ?73 °C, respectively. These monomer couples were copolymerized to prepare ion conductive polymer matrix. Thus prepared ionic liquid copolymers had no carrier ions, and they showed very low ionic conductivity of below 10?9 S cm?1. Equimolar amount of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) to imidazolium salt unit was then added to generate carrier ions in the ionic liquid copolymers. Poly(vinylimidazolium‐co‐vinylsulfonate) containing equimolar LiTFSI showed the ionic conductivity of 4 × 10?8 S cm?1 at 30 °C. Advanced copolymer, poly(vinylimidazolium‐co‐3‐sulfopropyl acrylate) which has flexible spacer between the anionic charge and polymer main chain, showed the ionic conductivity of about 10?6 S cm?1 at 30 °C, which is 100 times higher than that of copolymer without spacer. Even an excess amount of LiTFSI was added, the ionic conductivity of the copolymer kept this conductivity. This tendency is completely different from the typical polyether systems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.

A nanocomposite polymer electrolyte consisting of 49% poly(methyl methacrylate)-grafted natural rubber (MG49) as a polymer matrix, lithium tetrafluoroborate (LiBF4) as a dopant salt, and titanium dioxide (TiO2) as an inert ceramic filler was prepared by solution casting technique. The ceramic filler, TiO2, was synthesized in situ by a sol–gel process. The ionic conductivity was investigated by alternating current impedance spectroscopy. X-ray diffraction (XRD) was used to determine the structure of the electrolyte, and its morphology was examined by scanning electron microscopy (SEM). The highest conductivity, 1.4 × 10−5 S cm−1 was obtained at 30 wt.% of LiBF4 salt addition with 6 wt.% of TiO2 filler content. Ionic conductivity was found to increase with the increase of salt concentration. The optimum value of conductivity was found at 6 wt.% of TiO2. The XRD analysis revealed that the crystalline phase of the polymer host slightly decreased with the addition of salt and filler. The SEM analysis showed that the smoother the surface of the electrolyte, the higher its conductivity.

  相似文献   

10.
Developing high-performance functional polymer-based electrolytes is important for realizing next generation safe lithium metal batteries. In this study, a new type of quasi-solid polymer network electrolyte (SIPH-x-y%) was prepared by combining synthesized polymer network (SIPH) containing urethane bond linked ionic liquids (ILs), polyethylene glycol (PEG), and disulfide bond moieties, lithium bis(trifluoromethanesulfonyl)imide salt (LiTFSI), and glyme type additive. It was found that SIPH-20-40% was mechanically flexible, self-healable, and showed high ionic conductivity of 2.67×10−4 S cm−1. Also, SIPH-20-40% possesses a high lithium ion transference number of 0.43 and good electrochemical stability. These properties enabled the SIPH-20-40% electrolyte membrane to support Li/Li symmetrical cell to cycle stably during long term Li plating and stripping. The Li/SIPH-20-40%/LFP showed high delivered specific capacity and good stability (166.1 mAh g−1 after 106 cycles at 0.2 C). Such glyme doped polymer network electrolyte provides new experimental findings for developing polymer-based electrolyte with excellent mechanical integrity and battery related properties.  相似文献   

11.
Networked polymers that had poly(ethylene glycol) (PEG) chains and lithium sulfonylimide salt structures were prepared by curing a mixture of poly(ethylene glycol) diglycidyl ether and lithium 3‐glycidyloxypropanesulfonyl‐trifluoromethanesulfonylimide with poly(ethylene glycol) bis(3‐aminopropyl) terminated. The obtained flexible self‐standing networked polymer films showed high thermal and mechanical stability with relatively high ionic conductivity. The room temperature ionic conductivity under a dry condition was in the range of 10?5 ~ 10?4 S m?1, which is one order of magnitude higher than the corresponding networked polymers having lithium sulfonate salt structures (10?6 ~ 10?5 S m?1). The film sample became swollen by immersing in propylene carbonate (PC) or PC solution of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The sample swollen in PC showed higher ionic conductivity (7.2 × 10?3 S m?1 at room temperature), and the sample swollen in 1.0 M LiTFSI/PC showed much higher ionic conductivity (8.2 × 10?1 S m?1 at room temperature). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
Details on the structure and transport characteristics of the solid polymer electrolyte polyethylene oxide (PEO)/lithium salt (LiClO4) modified by novolac phenolic resin are presented here. From IR spectra it could be concluded that complex formation occurred through multiple interactions between the ether oxygen of PEO–lithium, phenolic lithium, and the phenolic ether oxygen of PEO. The free hydroxyl band in phenolic reflected that phenolic closely interacted with both the PEO polymer and ionic salt. With increasing salt content in PEO, the vibration band corresponding to the ClO anion (~623 cm?1) displayed growth of a shoulder at ~635 cm?1, suggesting the formation of Li+…ClO4? ion pairing. However, in the presence of phenolic, ion‐pairing formation was effectively suppressed, which suggested that the phenolic moiety facilitated a greater degree of LiClO4 salt dissociation. Activation energy analysis revealed two conducting pathways: one through the amorphous PEO and the other through the PEO/phenolic amorphous matrix. The high ion conductivity originated from effective salt dissociation and the establishment of a new conduction network formed by PEO and phenolic. Furthermore, the structural modification also extended the thermal stability and mechanical strength of the solid polymer electrolyte composite. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3866–3875, 2004  相似文献   

13.
Transparent thin film polymer electrolytes were prepared by solvent casting technique with the doping of environmental-friendly ionic liquid, 1-allyl-3-methylimidazolium chloride ([Amim] Cl) into the matrix formed by cellulose acetate (CA) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The ionic conducting nature of this system improves significantly from the order of 10?7–10?2 S cm?1 upon increasing doping of [Amim] Cl content till a maximum of 4.68 × 10?2 S cm?1 is attained for the composition CA:LiTFSI:[Amim] Cl (14:6:80 wt%). The improving trend in ionic conductivity results from the bond weakening between the connecting atoms in the crystalline region that induces to the increase in amorphous counterpart fractions in the CA matrix. This observation was proved via the accountancies in the reduction of relative viscosity, root mean square value and increase in void as increase in [Amim] Cl doping. The resultant phase conversion hence permits immense lithium ion (Li+) fluidity along the polymer backbone and assisting the improvement in ionic conductivity. The thin film polymer electrolyte is found to be elastic in the presence of crystalline fraction and radically deforms upon the chains diffusion into the amorphous fraction. The linear curvatures of the Arrhenius plot justify the conductivity improvement as via the increasing frequency of Li+ ions hopping as the temperature increases. The increasing addition of [Amim] Cl diminishes both the heat-resistivity and thermal stability of CA:LiTFSI:[Amim] Cl matrix.  相似文献   

14.
Solid polymer electrolytes with relatively low ionic conductivity at room temperature and poor mechanical strength greatly restrict their practical applications. Herein, we design semi-interpenetrating network polymer (SNP) electrolyte composed of an ultraviolet-crosslinked polymer network (ethoxylated trimethylolpropane triacrylate), linear polymer chains (polyvinylidene fluoride-co-hexafluoropropylene) and lithium salt solution to satisfy the demand of high ionic conductivity, good mechanical flexibility, and electrochemical stability for lithium metal batteries. The semi-interpenetrating network has a pivotal effect in improving chain relaxation, facilitating the local segmental motion of polymer chains and reducing the polymer crystallinity. Thanks to these advantages, the SNP electrolyte shows a high ionic conductivity (1.12 mS cm−1 at 30 °C), wide electrochemical stability window (4.6 V vs. Li+/Li), good bendability and shape versatility. The promoted ion transport combined with suppressed impedance growth during cycling contribute to good cell performance. The assembled quasi-solid-state lithium metal batteries (LiFePO4/SNP/Li) exhibit good cycling stability and rate capability at room temperature.  相似文献   

15.
New polymer gel electrolytes based on polyester diacrylates and LiClO4 salt solutions in organic solvents are developed for lithium ion and lithium polymer batteries with a high ionic conductivity up to 2.7 × 10?3 Ohm?1cm?1 at the room temperature. To choose the optimum liquid electrolyte composition, the dependence is studied of physico-chemical parameters of new gel electrolytes on the composition of the mixture of aprotic organic solvents: ethylene carbonate, propylene carbonate, and λ-butyrolacton. The bulk conductivity of gel electrolytes and exchange currents at the gel electrolyte/Li interface are studied using the electrochemical impedance method in symmetrical cells with two Li electrodes. The glass transition temperature and gel homogeneity are determined using the method of differential scanning calorimetry. It is found that the optimum mixture is that of propylene carbonate and λ-butyrolacton, in which a homogeneous polymer gel is formed in a wide temperature range of ?150 to +50°C.  相似文献   

16.
In this work, a polymer/ceramic phase-separation porous membrane is first prepared from polyvinyl alcohol–polyacrylonitrile water emulsion mixed with fumed nano-SiO2 particles by the phase inversion method. This porous membrane is then wetted by a non-aqueous Li–salt liquid electrolyte to form the polymer/colloid dual-phase electrolyte membrane. Compared to the liquid electrolyte in conventional polyolefin separator, the obtained electrolyte membrane has superior properties in high ionic conductivity (1.9 mS?cm?1 at 30 °C), high Li+ transference number (0.41), high electrochemical stability (extended up to 5.0 V versus Li+/Li on stainless steel electrode), and good interfacial stability with lithium metal. The test cell of Li/LiCoO2 with the electrolyte membrane as separator also shows high-rate capability and excellent cycle performance. The polymer/colloid dual-phase electrolyte membrane shows promise for application in rechargeable lithium batteries.  相似文献   

17.
Dual-phase polymer electrolytes (DPE) that have high ionic conductivity (> 10?3 S/cm) and good mechanical strength were prepared by mixing NBR and SBR latices and casting films. The latex films absorbed large quantities of lithium salt solution (e.g., 1M lithium perchlorate in γ-butyrolactone) to obtain DPE films but did not dissolve with swelling. The NBR phase is polar and was impregnated selectively with the polar lithium salt solution, whereas the SBR phase is nonpolar and formed a mechanically-supportive matrix. Transmission electron microscopic (TEM), electron energy loss spectral (EELS), and energy-dispersive x-ray (EDX) analyses showed microscopically the dual-phase structure. Evidence for swelling by lithium salt solution was found only in the NBR phase and not in the SBR phase by EDX microanalysis. Ionic conductivity as a function of NBR content or swelling degree showed clearly that a percolation threshold for ionic conductivity exists. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
Poly{2-methacryloyl-3-[ω-methoxyoligo(oxyethylene)]propanesulfonate lithium} (PMMOEPLi), a new kind of polymer salt intended for “inorganic salt-polymer salt” hybrid systems, was synthesized. This polymer salt has high flexibility and high polarity. Upon addition of PMMOEPLi to LiClO3 based electrolytes, ionic conductivities as high as 10−3 S/cm were obtained at ambient temperature. In the electrolyte studied Li+ dominates the conductivity, making this material a good candidate for application in lithium rechargeable batteries.  相似文献   

19.
The present study focuses on the preparation and characterization of poly(vinyl alcohol)/poly(vinylidene fluoride) blend polymer electrolyte doped with lithium triflate (LiCF3SO3). Interaction of lithium triflate with the host polymer in the solid polymer electrolyte was studied using X-ray diffraction, Fourier transform infrared spectroscopy and differential scanning calorimetry analysis. It was found that 15% salt doped polymer electrolyte possesses the highest ionic conductivity (2.7 × 10–3 S/cm) at 303 K, the higher thermal stability at 175°C. Linear sweep voltammetry results revealed that the film is electrochemically stable up to 3.4 V.  相似文献   

20.
UV-cured caprolactone-based polyurethane acrylate (PUA) polymer blend electrolytes were prepared and characterised. To develop polymer electrolytes suited to ambient temperature, an ionically-conductive and reliable polymer electrolyte based on urethane acrylate resins synthesised from a fluorine-containing di-functional oligomer 6F ethoxylated diacrylate, a di-functional reactive diluent 1,6-hexanediol diacrylate for adjusting the viscosity, and a radical photo-initiator doped with a mixture of lithium salts were used. Free-standing flexible electrolyte films were prepared by UV-curing via free-radical photopolymerisation. The performance of the lithium polymer cell system (Li/PE(F4)/LiCoO2) was determined by electrochemical impedance spectroscopy, cyclic voltammetry, a galvanostatic recurrent differential pulse, chronocoulometry and chronoamperometry. The electrolyte with optimal amounts of fluorine-containing oligomer and optimal salt mixture content exhibited enhanced conductivity, showing a conductivity of 1.00 × 10?4 S cm?1 at ambient temperature. The specific capacity, specific energy and specific power of a Li/PE(F4)/LiCoO2 cell were also determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号