首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report electronic polarization spectroscopy of tryptamine embedded in superfluid helium droplets. In a dc electric field, dependence of laser induced fluorescence from tryptamine on the polarization direction of the excitation laser is measured. Among the three observed major conformers A, D, and E, conformers D and E display preference for perpendicular excitation relative to the orientation field, while conformer A is insensitive to the polarization direction of the excitation laser. We attribute the behavior of conformer A to the fact that the angle between the permanent dipole and the transition dipole is close to the magic angle. Using a linear variation method, we can reproduce the polarization preference of the three conformers and determine the angle between the transition dipole and the permanent dipole. Since the side chain exerts small effect on the direction of the transition dipole in the frame of the indole chromophore, all three conformers have a common transition dipole more or less in the indole plane at an angle of approximately 60 degrees relative to the long axis of the chromophore. The orientation of the side chain, on the other hand, determines the size and direction of the permanent dipole, thereby affecting the angle between the permanent dipole and the transition dipole. For conformer D in the droplet, our results agree with the Anti(ph) structure, rather than the Anti(py) structure. Our work demonstrates that polarization spectroscopy is effective in conformational identification for molecules that contain a known chromophore. Although coupling of the electronic transition with the helium matrix is not negligible, it does not affect the direction of the transition dipole.  相似文献   

2.
The laser-induced fluorescence (LIF) excitation spectra of free base phthalocyanine (Pc), Mg-Pc, and Zn-Pc molecules in superfluid helium droplets at T=0.38 K have been studied. The spectra reveal the rich vibronic structure of the S(1)<--S(0) electronic transitions. The band origins of the transitions consist of zero phonon lines accompanied by phonon wings, which originate from simultaneous electronic excitation of the molecule and excitation of the collective modes of the helium surrounding it. The phonon wings have discrete structures suggesting localization of some helium atoms in the neighborhood of the molecules. Zero phonon lines of Mg-Pc and Zn-Pc molecules are split into three components, which are separated by 0.2-0.4 cm(-1). Possible mechanism of splitting involves static or dynamic Jahn-Teller interaction of metal-phthalocyanine molecules in the twofold degenerate S(1)((1)E(u)) state with the helium shell.  相似文献   

3.
We have measured quantum states of the solvent-solute system of phthalocyanine in superfluid helium droplets in a high resolution pump-probe experiment. This provides evidence for the attribution of a splitting effect in the emission spectra of phthalocyanine in helium droplets to the relaxation of the first helium layer upon electronic excitation, measured recently by us. Our experimental results are a strong indication for the first helium layer playing a key roll for the solvation of molecules in helium droplets and, thus, for their spectroscopic features.  相似文献   

4.
Electronic spectra of molecules doped into superfluid (4)He nanodroplets reveal important details of the microsolvation in superfluid helium. The vibrational fine structure in the electronic spectra of phthalocyanine derivatives and pyrromethene dye molecules doped into superfluid helium droplets have been investigated. Together with previous studies on anthracene derivatives [J. Chem. Phys.2010, 133, 114505] and 3-hydroxyflavone [J. Chem. Phys.2009, 131, 194307], the line shapes vary between two limiting cases, namely, sharp Lorentzians and nonresolved vibrational fine structure. All different spectral signatures are initiated by the same effect, namely, the change of the electron density distribution initiated by the electronic excitation. This change can be quantified by the difference of the electrostatic moments of the molecule in the electronic ground state and the corresponding Franck-Condon point in the excited state. According to the experimental data, electronic spectroscopy suffers from drastic line broadening when accompanied by significant changes of the charge distribution, in particular, changes of the dipole moment. Vice versa, the vibrational fine structure in electronic spectra of molecules doped into helium droplets is highly sensitive to changes of the electron density distribution.  相似文献   

5.
Van der Waals clusters of phthalocyanine with 1-4 argon atoms formed inside superfluid helium nanodroplets have been investigated by recording fluorescence excitation spectra as well as emission spectra. The excitation spectra feature a multitude of sharp lines when recorded in superfluid helium droplets in contrast to the respective spectra measured in a seeded supersonic beam (Cho et al. Chem. Phys. Lett. 2000, 326, 65). The pickup technique used for doping of the phthalocyanine and the argon into the droplets allows for nondestructive analysis of the cluster sizes. Alternation of the pickup sequence gives information on the binding site of the argon atoms. The investigation of dispersed emission spectra in helium droplets can be used as a special tool for the identification of 0(0)0 transitions within the variety of sharp lines seen in the excitation spectra. Thus, different isomers of the clusters can be distinguished. Moreover, the emission spectra reveal information on dynamic processes such as vibrational predissociation of the van der Waals complexes and interconversion among isomeric species. The binding energy of the phthalocyanine-argon1 complex in helium droplets was estimated to be at most 113 cm-1.  相似文献   

6.
Experimental and theoretical investigations of the spectroscopy of molecules in superfluid helium droplets provide evidence for the key role of the first helium layer surrounding the dopant molecule in determining the molecule's spectroscopic features. Recent investigations of emission spectra of phthalocyanine in helium droplets revealed a doubling of all transitions. Herein, we present the emission spectra of Mg-phthalocyanine and of phthalocyanine-argon clusters in helium droplets, which confirm the splitting as a general effect of the helium environment. A scheme of levels is deduced from the emission spectra and attributed to quantized states of the first helium layer surrounding the dopant molecule.  相似文献   

7.
A remarkable influence of the orientation of a polar side chain on the direction of the S(1) ← S(0) transition dipole moment of monosubstituted benzenes was previously reported from high-resolution electronic spectroscopy. In search for a more general understanding of this non-Condon behavior, we investigated ethylamino-substituted indole and benzene (tryptamine and 2-phenylethylamine) using ab initio theory and compared the results to rotationally resolved laser-induced fluorescence measurements. The interaction of the ethylamino side chain with the benzene chromophore can evoke a rotation and a change of ordering of the molecular orbitals involved in the excitation, leading to state mixing and large changes in the orientation of the excited-state transition dipole moment. These changes are much less pronounced in tryptamine with the indole chromophore, where a rotation of the transition dipole moment is attributed to Rydberg contributions of the nitrogen atom of the chromophore. For phenylethylamine, a strong dependence of the oscillator strengths of the lowest two singlet states from the conformation of the side chain is found, which makes the use of experimental vibronic intensities for assessment of relative conformer stabilities at least questionable.  相似文献   

8.
High resolution IR spectra of aniline, styrene, and 1,1-diphenylethylene cations embedded in superfluid helium nanodroplets have been recorded in the 300-1700 cm(-1) range using a free-electron laser as radiation source. Comparison of the spectra with available gas phase data reveals that the helium environment induces no significant matrix shift nor leads to an observable line broadening of the resonances. In addition, the IR spectra have provided new and improved vibrational transition frequencies for the cations investigated, as well as for neutral aniline and styrene. Indications have been found that the ions desolvate from the droplets after excitation by a non-evaporative process in which they are ejected from the helium droplets. The kinetic energy of the ejected ions is found to be ion specific and to depend only weakly on the excitation energy.  相似文献   

9.
We have recorded the electronic spectra of three polycyclic aromatic hydrocarbons (acenaphtylene, fluoranthene, and benzo(k)fluoranthene) containing a five-member ring and their van der Waals complexes with argon and oxygen with a molecular beam superfluid helium nanodroplet spectrometer. Although the molecules, which differ by addition of one or two fused benzene rings to acenaphtylene, have the same point group symmetry, the spectral lineshapes show distinct differences in the number of zero phonon lines and shapes of the phonon wings. Whereas the smallest molecule (acenaphtylene) has the most complicated line shape, the largest molecule (benzo(k)fluoranthene) shows different lineshapes for different vibronic transitions. The van der Waals complexes of fluoranthene exhibit more peaks than the theoretically allowed number of isomeric complexes with argon/oxygen. The current models of molecular solvation in liquid helium do not adequately explain these discrepancies.  相似文献   

10.
The time-dependent polarized fluorescence and optical density transients arising from electronic excitation transport are derived for solutions of randomly oriented chromoproteins in which the chromophore transition moments have well-defined orientations with respect to the protein. The treatment is extended to oriented monolayers of chromoproteins, in which the molecules are aligned with a particular protein-fixed axis perpendicular to the surface plane and with random azimuthal angles about the surface normal. The initial ratio of parallel to perpendicular transients is invariably 3:1, irrespective of system dimensionality and chromophore organization. The residual anisotropy observed at long times is directly related to the relative orientations of the donor and acceptor chromophores. These calculations form a basis for detailed interpretation of ultrafast fluoresence and pump-probe linear dichroism studies in photosynthetic systems, for which 3-dimensional structures are becoming increasingly available.  相似文献   

11.
Alkali-metal atoms captured on the surface of superfluid helium droplets are excited to high energies (≈3?eV) by means of pulsed lasers, and their laser-induced-fluorescence spectra are recorded. We report on the one-photon excitation of the (n+1)p←ns transition of K, Rb, and Cs (n=4, 5, and 6, respectively) and on the two-photon one-color excitation of the 5d←5s transition of Rb. Gated-photon-counting measurements are consistent with the relaxation rates of the bare atoms, hence consistent with the reasonable expectation that atoms quickly desorb from the droplet and droplet-induced relaxation need not be invoked.  相似文献   

12.
The pump-probe polarization anisotropy is computed for molecules with a nondegenerate ground state, two degenerate or nearly degenerate excited states with perpendicular transition dipoles, and no resonant excited-state absorption. Including finite pulse effects, the initial polarization anisotropy at zero pump-probe delay is predicted to be r(0) = 3/10 with coherent excitation. During pulse overlap, it is shown that the four-wave mixing classification of signal pathways as ground or excited state is not useful for pump-probe signals. Therefore, a reclassification useful for pump-probe experiments is proposed, and the coherent anisotropy is discussed in terms of a more general transition dipole and molecular axis alignment instead of experiment-dependent ground- versus excited-state pathways. Although coherent excitation enhances alignment of the transition dipole, the molecular axes are less aligned than for a single dipole transition, lowering the initial anisotropy. As the splitting between excited states increases beyond the laser bandwidth and absorption line width, the initial anisotropy increases from 3/10 to 4/10. Asymmetric vibrational coordinates that lift the degeneracy control the electronic energy gap and off-diagonal coupling between electronic states. These vibrations dephase coherence and equilibrate the populations of the (nearly) degenerate states, causing the anisotropy to decay (possibly with oscillations) to 1/10. Small amounts of asymmetric inhomogeneity (2 cm(-1)) cause rapid (130 fs) suppression of both vibrational and electronic anisotropy beats on the excited state, but not vibrational beats on the ground electronic state. Recent measurements of conical intersection dynamics in a silicon napthalocyanine revealed anisotropic quantum beats that had to be assigned to asymmetric vibrations on the ground electronic state only [Farrow, D. A.; J. Chem. Phys. 2008, 128, 144510]. Small environmental asymmetries likely explain the observed absence of excited-state asymmetric vibrations in those experiments.  相似文献   

13.
The polarization of an excimer-type transition in 9-anthroic acid (9-anthracenecarboxylic acid) has been determined experimentally. A negative polarization of the excimer-type transition was observed with respect to the in-plane excitation. The polarization of the excimer-type transition has a component perpendicular to the molecular plane.  相似文献   

14.
We report internal and attenuated total reflection of light at the interface between glass and a quaterthiophene crystal in the spectral region of the electronic transitions. The bands corresponding to the absorption of the a(u) and b(u) Frenkel exciton states are detected for different polarization of the incident light. In particular, the wave-normal vector being almost perpendicular to the b(u) transition dipole moment allows its transverse component to be accessed, whose excitation in conventional external reflection or transmission spectroscopies is forbidden.  相似文献   

15.
Femtosecond dynamics of molecular vibrations as well as cage motions in the B<--X transition of Cl2 in solid Ar have been investigated. We observed molecular vibrational wave-packet motion in experimental pump-probe spectra and an additional oscillation with a 500 fs period which is assigned to the zone-boundary phonon of the Ar crystal. The cage motion is impulsively driven by the B<--X transition due to the expansion of the electronic cloud of the chromophore. To clarify the underlying mechanism, we performed simulations based on the diatomics-in-molecules method which takes into account the different shapes of the Cl2 electronic wave function in the B and X states as well as the anisotropic interaction with the matrix. The simulation results show that Ar atom motion in the (100) plane is initiated by the electronic transition and that only those Ar atoms oscillate coherently with an approximately 500 fs period which are essentially decoupled from the molecular vibration. Their phase and time evolution are in good agreement with the experimentally observed oscillation, supporting the assignment as a displacive excitation of coherent phonons.  相似文献   

16.
We report the synthesis and photophysical characterization of 7-dimethylamino-3-methyl-N-methyl-d(3)-4-phenylethynylcarbostyril, a chromophore of interest as a rotator in surface-mounted molecular rotors. Measurement of UV-vis absorption and fluorescence spectra, steady state fluorescence and excitation anisotropy, and linear dichroism in the IR and UV-vis permitted a determination of absolute vibrational and electronic transition moment directions in this previously unreported chromophore. The first singlet-singlet absorption and fluorescence are polarized perpendicular to the axle of the rotator. Density functional theory calculations of electronic excitation and vibrational frequencies gave results in very good agreement with those observed. Calculated IR transition moment directions showed rather poor agreement with experiment.  相似文献   

17.
Hyperfine resolved electron spin resonance (ESR) measurements of single rubidium ((87)Rb) atoms isolated on superfluid helium nanodroplets are presented. In accordance with our previous work on (85)Rb, we find a relative increase of the hyperfine constant a(HFS) by about 400 ppm, depending on the size of the droplets. In order to optimize the ESR signal intensities, the processes of optical pumping of Rb atoms on helium droplets and of optical detection of the ESR transitions are investigated in detail. Both the laser intensity and polarization influences the ESR signal intensities. A simple model for optical pumping of Rb atoms on helium droplets is presented, which agrees well with the experimental results.  相似文献   

18.
We study the intensity and polarization of light emitted during slow ion-atom collisions. We describe the nuclei as moving along classical trajectories while the electronic rearrangement is treated using time-dependent molecular orbitals. The intensity of emitted light is calculated from the diatomic time-dependent dipole. We evaluate the diatomic dipole matrix elements involving 1s, 2s, and 2p traveling atomic orbitals suitable for time-dependent collision studies. We calculate the intensity and the polarization of light emitted in p + H(1s) collisions at kinetic energies from 10 to 1000 eV, for several impact parameters, changing over time. The emitted intensity goes through a maximum as the collision energy increases and lasts between 10 and 1 fs; the polarized light components parallel and perpendicular to the incoming beam direction show pronounced dependences on impact parameters and time. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
A new technique that combines nonphotochemical hole burning with multichannel detected fluorescence line narrowing has been used to obtain vibrationally resolved fluorescence spectra of squaraine chromophores in polymer matrices at 1.4 K. At a fixed excitation frequency, the intensities of the zero-phonon lines decay with time due to nonphotochemical hole burning, leaving behind a broader background attributed to emission from molecules excited into phonon sidebands. Subtracting the spectrum of the hole-burned sample from the initial one leaves predominantly a zero-phonon line excited spectrum exhibiting enhanced vibrational structure. Spectra of the same squaraine in polystyrene and polyethylene matrices show differences in the frequencies and intensities of the phonon sidebands, indicating differences in the frequencies and strengths of the matrix modes coupled to the electronic transition of the chromophore. The phonon densities of states inferred through different measurement techniques are compared and related to electronic dephasing rates.  相似文献   

20.
Steady-state and time-resolved polarized spectroscopy studies reveal that electronic excitation to the third excited state of 1,4-distyryl-2,5-bis(arylethynyl)benzene cruciforms results in fluorescence emission that is shifted an angle of ca. 60°. This result is consistent with quantum chemical calculations of the lowest electronic excited states and their transition dipole moments. The shift originates from the disjointed nature of the occupied molecular orbitals being localized on the different branches of the cruciforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号