首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intermolecular interaction potential for methane-argon complex is calculated by local density approximation (LDA) approaches. The calculated potential has a minimum when the intermolecular distance of methane-argon complex is 6.75 a.u.; the corresponding depth of the potential is 0.0163eV which has good agreement with experimental data. We also have made a nonlinear fitting of our results for the Lennard-Jones (12-6) potential function and obtain that V(R)=143794365.332/R^{12}-3032.093 / R^6 (R in a.u. and V(R) in eV).  相似文献   

2.
The formation mechanism for the regular octahedral structure of Liscluster is proposed. The curve of the total energy versus the separation R between any two neighboring nuclei has been calculated by using the method of Gou's modified arrangement channel quantum mechanics (MACQM). The result shows that the curve has a minimal energy of -44.736 89 a.u. at R = 5.07a0. When R approaches infinity, the total energy of six lithium atoms has the value of -44.568 17 a.u. So the binding energy of Li6 with respect to six lithium atoms is 0.1687 a.u. Therefore, the binding energy per atom for Li6 is 0.028 12 a.u., or 0.7637 eV, which is greater than the binding energy per atom of 0.453 eV for Li2 and the binding energy per atom of 0.494 eV for Li3 calculated in our previous work. This means that the Li6 cluster may be formed in a regular octahedral structure with a greater binding energy.  相似文献   

3.
闫冰  张玉娟 《中国物理 B》2013,22(2):23103-023103
The potential energy curves for neutrals and multiply charged ions of carbon monosulfide are computed with highly correlated multi-reference configuration interaction wavefunctions.The correlations of inner-shell electrons with the scalar relativistic effects are included in the present computations.The spectroscopic constants,dissociation energies,ionization energies for ground and low-lying excited states together with corresponding electronic configurations of ions are obtained,and a good agreement between the present work and existing experiments is found.No theoretical evidence is found for the adiabatically stable CSq+(q>2) ions according to the present ab initio calculations.The calculated values for 1st-6th ionization energies are 11.25,32.66,64.82,106.25,159.75,and 224.64 eV,respectively.The kinetic energy release data of fragments are provided by the present work for further experimental comparisons.  相似文献   

4.
The formation mechanism for the regular tetrahedral structure of Li4 cluster is proposed. The curve of the total energy versus the separation R between the two nuclei has been calculated by using the method of Gou‘s modified arrangement channel quantum mechanics (MACQM). The result shows that the curve has a minimal energy of-29.8279 a.u. at R=14.50 a0. When R approaches infinity the total energy of four lithium atoms has the value of-29.7121 a.u. So the binding energy of Li4 with respect to four lithium atoms is the difference of 0.1158 a.u.for the above two energy values. Therefore the binding energy per atom for Li4 is 0.029 a.u., or 0.7878 eV, which is greater than the binding energy per atom of 0.453 eV for Li2, the binding energy pcr atom of 0.494 eV for Li3 and the binding energy per atom of 0.632 eV for Li5 calculated previously by us. This means that the Li4 cluster may be formed stably in a regular tetrahedral structure of side length R=14.50 a0 with a greater binding energy.  相似文献   

5.
The formation mechanism for the regular tetrahedral structure of Li4 cluster is proposed. The curve of the total energy versus the separation R between the two nuclei has been calculated by using the method of Gou's modified arrangement channel quantum mechanics (MACQM). The result shows that the curve has a minimal energy of-29.8279 a.u. at R = 14.50 ao. When R approaches infinity the total energy of four lithium atoms has the value of-29.7121 a.u. So the binding energy of Li4 with respect to four lithium atoms is the difference of 0.1158 a.u.for the above two energy values. Therefore the binding energy per atom for Lh is 0.020 a.u., or 0.7878 eV, which is greater than the binding energy per atom of 0.453 eV for Li2, the binding energy per atom of 0.494 eV for Lia and the binding energy per atom of 0.632 eV for Li5 calculated previously by us. This means that the Li4 cluster may be formed stably in a regular tetrahedral structure of side length R = 14.50 ao with a greater binding energy.  相似文献   

6.
A fully relativistic configuration interaction method is developed to investigate the transition energies and general oscillator strengths of the lower lying states of krypton, for both optically allowed and optically forbidden transitions. The calculated results are in agreement with the recent experimental measurements. The calculated transition energies for the 5s and 5s' transitions are 9.970 and 10. 717eV, which agree with the experimental data of 10.033 and 10.643 eV. The calculated oscillator strengths are 0.211 and 0. 170, comparable with the experimental results 0.214(±0.012) and 0.194 (±0.012), respectively. The momentum transfer positions (K^2 in a.u.) of the minimum and maximum GOSs in the 4s^24p^6 → 4s^24p^5 (5s + 5s') transitions are 1.105 and 2.225, comparable with the measurements results 1.24 and 2.97 [Phys. Rev. A 67 (2003) 062708].  相似文献   

7.
A complex optical model potential modified by incorporating the concept of bonded atom, with the overlapping effect of electron clouds between two atoms in a molecule taken into consideration, is firstly employed to calculate the differential cross sections, elastic integral cross sections, and moment transfer cross sections for electron scattering from molecular nitrogen over the energy range 300—1000eV by using additivity rule model at Hartree—Fock level. The bonded-atom concept is used in the study of the complex optical model potential composed of static, exchange, correlation polarization and absorption contributions. The calculated quantitative molecular differential cross sections, elastic integral cross sections, and moment transfer cross sections are compared with the experimental and theoretical ones wherever available, and they are found to be in good agreement with each other. It is shown that the additivity rule model together with the complex optical model potential modified by incorporating the concept of bonded atom is completely suitable for the calculations of differential cross section, elastic integral cross section and moment transfer cross section over the intermediate- and high-energy ranges.  相似文献   

8.
A theoretical calculation is carried out to investigate the spectrum of a barium Rydberg atom in an external magnetic field. Using an effective approach incorporating quantum defect into the centrifugal term in the Hamiltonian, we reexamine the reported spectrum of the barium Rydberg atom in a magnetic field of 2.89 T [J. Phys. B 28 L537 (1995)]. Our calculation employs B-spline basis expansion and complex coordinate rotation techniques. For single photon absorption from the ground 6s2 to 6snp Rydberg states, the spectrum is not influenced by quantum defects of channels ns and nd. The calculation is in agreement with the experimental observations until the energy reaches E = 60 cm-1 . Beyond this energy, closer to the threshold, the calculated and experimental results do not agree with each other. Possible reasons for their discrepancies are discussed. Our study affirms an energy range where the diamagnetic spectrum of the barium atom can be explained thoroughly using a hydrogen model potential.  相似文献   

9.
The total (elastic plus inelastic) cross sections for positron scattering from N2 and CO2 over the incident energy range from 30 to 3000eV are calculated using the additivity rule model at Hartree-Fock level.A complex optical model potential modified by incorporating the concept of bonded atom, which takes into account the overlapping effect of electron clouds between two atoms in a molecule, is employed to calculate the total cross section of positron-molecule scattering. The calculated total cross sections are in good agreement with those reported by experiments and other theories over a wide energy range.  相似文献   

10.
The total (elastic plus inelastic) cross sections for positron scattering from N2 and CO2 over the incident energy range from 30 to 3000eV are calculated using the additivity rule model at Hartree-Fock level. A complex optical model potential modified by incorporating the concept of bonded atom, which takes into account the overlapping effect of electron clouds between two atoms in a molecule, is employed to calculate the total cross section of positron-molecule scattering. The calculated total cross sections are in good agreement with those reported by experiments and other theories over a wide energy range.  相似文献   

11.
The C35BH-H2 complex and two other possible isomers, C34BCaH-H2 and C34BCbH-H2, are investigated using the local-spin-density approximation (LSDA) method. The results indicate that a single hydrogen molecule could be strongly adsorbed on two isomers, C34BCaH and C34BCbH, with binding energies of 0.42 and 0.47eV, respectively, and that these calculated binding energies are suitable for reversible hydrogen adsorption/desorption near room temperature. However, it is difficult for the H2 molecule to be firmly adsorbed on C35BH. We analyze the interaction between C34BCxH (x= a, b) and the H2 molecule using dipole moments and molecular orbitals. The charge analysis showed there was a partial charge (about 0.32e) transfer from 1-12 to the doped fullerenes. These calculation results should broaden our understanding of the mechanisms of hydrogen storage using borondoped fullerenes.  相似文献   

12.
袁建民 《中国物理快报》2002,19(10):1459-1462
An average-atom model is propsed to calculate the opacities of hot and dense plasmas of a mixture.A selfconsistent scheme is used to reach the requirements of the same temperature and chemical potential for all kinds of atoms in the mixtures,the same electron density at the boundaries between the atoms,and the electrical neutrality within each atomic sphere.The orbital energies and wavefunctions for the bound electrons are calculated with the Dirac-Slater equations.The occupation numbers at each orbital of each kind of atom are determined by the Fermi-Dirac distribution with the same chemical potential for all kinds of atoms.As an example,the opacity of the mixture of Au and Cd is calculated at a few temperatures and densities.  相似文献   

13.
In this paper,the electronic transfer integrals,the energy gap,and the bandwidth of a planar trans-polyacetylene chain are calculated in Wannier representation,in which a combination of the wave function of hydrogen-like atoms is used to stand for the Wannier function.When the effective nuclear charge number Z=2.125 and the distortion amplitude of the carbon sites u=0.0038 nm,the nearest,next,and third neighborhopping energies obtained are -3.224 78 eV,-2.388 61 eV,0.148 14 eV,0.006 65 eV,and 0.00650 eV,respectively.The energy bandwidth and gap corresponding to these values are Wd=11.19 eV and Eg=1.70 eV,respectively.These results coincide with the experimental values.  相似文献   

14.
In this paper,we propose an ellipsometer using a phase retarder and rotating polarizer and analyzer at a speed ratio 1:N.Different ellipsometric configurations are presented by assuming N = 1,2,and 3.Moreover,two values of the offset angle of the retarder are considered for each ellipsometric configuration.The Mueller formalism is employed to extract the Stokes parameters,from which the intensity received by the detector is obtained.The optical properties of c-Si are calculated using all configurations.A comparison between different configurations is carried out considering the effect of the noise on the results and the uncertainties in the ellipsometric parameters as functions of the uncertainties of the Fourier coefficients.It is found that the alignment of the phase retarder has a crucial impact on the results and the ellipsometric configuration with speed ratio 1:1 is preferred over the other configurations.  相似文献   

15.
The g-factors of the 23P, 21P, and 33P states of the helium atom are calculated by using the vatiational wave functions constructed from the linear combinations of Slater-type basis sets. The relativistic corrections to order α2(a.u.) and the effect of the motion of the center of mass are treated by using first-order perturbation theory. Most of our predicted results are in good agreement with recent results of Yan and Drake, which were obtained by using the wave functions with doubled Hylleraas coordinates. Based on the analysis of the convergence pattern in our calculation, we believe that our predicted value of the δgL-factor for 33P state in 4He, 2.914 15×10-7, ought to be reasonable and accurate, although there are no corresponding experimental data available in the liteature yet to be compared with.  相似文献   

16.
The formation mechanism for the body-centred regular icosahedral structure of Li13 cluster is proposed. The curve of the total energy versus the separation R between the nucleus at the centre and nuclei at the apexes for this structure of Li13 has been calculated by using the method of Gou's modified arrangement channel quantum mechanics (MACQM). The result shows that the curve has a minimal energy of-96.951 39 a.u. at R = 5.46ao. When R approaches to infinity, the total energy of thirteen lithium atoms has the value of-96.564 38 a.u. So the binding energy of Lii3 with respect to thirteen lithium atoms is 0.387 01 a.u. Therefore the binding energy per atom for Lii3 is 0.029 77 a.u. or 0.810 eV, which is greater than the binding energy per atom of 0.453 eV for Li2, 0.494 eV for Li3, 0.7878 eV for Li4. 0.632 eV for Lis, and 0.674 eV for Liv calculated by us previously. This means that the Li13 cluster may be formed stably in a body-centred regular icosahedral structure with a greater binding energy.  相似文献   

17.
The formation mechanism for the body-centred regular octahedral structure of Li7 cluster is proposed. The curve of the total energy versus the separation R between the nucleus at the centre and nuclei at the apexes for this structure of Li7 has been calculated by using the method of Gou's modified arrangement channel quantum mechanics (MACQM). The result shows that the curve has a minimal energy of-52.169 73 a.u. at R = 5.06ao. When R approaches infinity, the total energy of seven lithium atoms has the value of-51.996 21 a.u. So the binding energy of Li7 with respect to seven lithium atoms is 0.173 52 a.u. Therefore the binding energy per atom for Li7 is 0.024 79 a.u. or 0.674 eV, which is greater than the binding energy per atom of 0.453 eV for Li2, the binding energy per atom of 0.494 eV for Li3 and the binding energy per atom of 0.632 eV for Li5 calculated previously by us. This means that the Li7 cluster may be formed stably in a body-centred regular octahedral structure with a greater binding energy.  相似文献   

18.
The phase partition and site preference of Re atoms in a ternary Ni-Al-Re model alloy,including the electronic structure of different Re configurations,are investigated with first-principles calculations and atom probe tomography.The Re distribution of single,nearest neighbor(NN),next-nearest neighbor(NNN),and cluster configurations are respectively designed in the models withγandγphases.The results show that the Re atoms tend to enteringγphase and the Re atoms prefer to occupy the Al sites inγphase.The Re cluster with a combination of NN and NNN Re-Re pair configuration is not preferred than the isolated Re atom in the Ni-based superalloys,and the configuration with isolated Re atom is more preferred in the system.Especially,the electronic states are analyzed and the energetic parameters are calculated.The electronic structure analyses show there exists strong Ni-Re electronic interaction and it is mainly contributed by the d-d hybridization.The characteristic features of the electronic states of the Re doping effects are also given.It is also found that Re atoms prefer the Al sites inγside at the interface.The density of states at or near the Fermi level and the d-d hybridizations of NN Ni-Re are found to be important in the systems.  相似文献   

19.
We investigate the differential cross sections (DCS) of elastic electron scattering from CH4, CF4 and SF6 at six impact energies in a range of 100 700eV by employing the independent atom model (IAM) together with the relativistic partial waves. The atom is present in an optical potential which is complex, spherically symmetric, and energy dependent. The optical potential of the atom is the sum of the direct static, dynamic polarization, local exchange and modified absorption potentials. The results obtained by using a modified absorption potential show significant improvements on the unmodified absorption potential results. The present results are generally in good agreement with experimental data available. In addition, the present results indicate that the structure of molecule manifests the observable effects on electron- molecule scattering.[第一段]  相似文献   

20.
Differential cross sections for the elastic scattering of electrons by oxygen molecule are calculated for selected impact energies 7eV and 9eV. The results are compared with other theoretical results and experimental data.The present results are obtained by the momentum space optical potential method. This method take the polarization of target states into account, which is very important for the scattering problem, particularly at low energies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号