首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
To study axial/radial profiles of particle velocity in the affected region of an integrated riser outlet,a cold model was developed for the integrated riser reactor combining the gas-solid distributor with the fluidized bed.Constraints,related to the gas-solid distributor and the upper fluidized bed,imposed on the particle flow in the riser outlet region,were investigated experimentally.The experimental results showed that with increasing superficial gas velocity,these constraints have strong influences on particle flow behavior,the particle circulation flux in the riser,and the height of the static bed material of the upper fluidized bed.When the constraints have greater prominence,the axial profile of the cross-sectionally averaged particle velocity in the outlet region initially increases and then decreases,the rate of decrease being proportional to the constraint strength.Along the radial direction of the outlet section,the region where the local particle velocity profile tends to decrease appears near the dimensionless radius r/R = 0.30 initially and then,with increasing constraint strength,gradually extends to the whole section from the inner wall.Based on the experimental data,an empirical model describing the constraint strength was established.The average relative error of the model is within 7.69%.  相似文献   

2.
To study the influence of back feeding particles on gas-solid flow in the riser, this paper investigated the flow asymmetry in the solid entrance region of a fluidized bed by particle concentration/velocity measurements in a cold square circulating fluidized beds (CFB). The pressure drop distribution along the riser and the saturation carrying capacity of gas for Geldart-B type particles were first analyzed. Under the condition of u0 = 4 m/s and Gs = 21 kg/(m^2 s), the back feeding particles were found to penetrate the lean gas-solid flow near the entrance (rear) wall before reaching the opposite (front) wall, thus leading to a relatively denser region near the front wall in the bottom bed. Higher solid circulation rate (u0 =4 m/s, Gs = 33 kg/(m^2 s)) resulted in a higher particle concentration in the riser. However the back feeding particles with higher momentum increased the asymmetry of the particle concentration/velocity profile in the solid entrance region. Lower air velocity (u0 =3.2 m/s) and Gs =21 kg/(m2 s), beyond the saturation carrying capacity of gas, induced an S-shaped axial solid distribution with a denser bottom zone. This limited the penetration of the back feeding particles and forced the flnidizing air to flow in the central region, thus leading to a higher solid holdup near the rear wall. Under the conditions of uo = 4 m/s and Gs = 21 kg/(m^2 s), addition of coarse particles (dp= 1145 μm) into the bed made the radial distribution of solids more symmetrical.  相似文献   

3.
Rotational asymmetric distribution of reactant (ozone) concentration and its evolution along with the gas-solid reactive flow were studied in a 76 mm i.d., 10.2 m high circulating fluidized bed (CFB) riser reactor. The superficial gas velocity ranged from 3 to 5 m/s and the solids circulation rates were 50 and 100 kg/(m2 s). Experimental results show that the asymmetry of reactant distribution can extend to a height close to the length of flow developing zone of the CFB riser reactor and then disappears. Based on the hydrodynamics of the gas and solid phases in the solids entrance region, this asymmetry can be attributed to the effect of the solids entrance structure.  相似文献   

4.
The behavior of the solid phase in the upper zone of a circulating fluidized bed riser was studied using a phase Doppler anemometer. Glass particles of mean diameter 107 μm and superficial gas velocities Ug covering the turbulent and the beginning of the fast fluidization regime were investigated. Three static bed heights were tested. Ascending and descending particles were found co-existing under all operating conditions tested, and at all measurement locations. Superficial gas velocity proved/happened to have a larger effect on descending particles at the wall and on ascending particles in the central region. Transversal particle velocities in both directions (toward the center and toward the wall) behaved relatively equivalently, with only slight difference observed at the wall. However, observation of the number of particles moving in either transversal direction showed a change in bed structure when increasing Ug. Furthermore, a balance was constantly observed between the core zone and the annulus zone where the mutual mass transfer between these two zones occurred continuously. Transition from a slow to a fast particle motion was accompanied by a transition to high levels of velocity fluctuations, and was found corresponding to the appearance of significant solid particle flow rate.  相似文献   

5.
Three dimensionally coupled computational fluid dynamics (CFD) and discrete element method (DEM) were used to investigate the flow of corn-shaped particles in a cylindrical spouted bed with a conical base. The particle motion was modeled by the DEM, and the gas motion by the k-? two-equation turbulent model. A two-way coupling numerical iterative scheme was used to incorporate the effects of gas–particle interactions in terms of momentum exchange. The corn-shaped particles were constructed by a multi-sphere method. Drag force, contact force, Saffman lift force, Magnus lift force, and gravitational force acting on each individual particle were considered in establishing the mathematical modeling. Calculations were carried out in a cylindrical spouted bed with an inside diameter of 200 mm, a height of 700 mm, and a conical base of 60°. Comparison of simulations with experiments showed the availability of the multi-sphere method in simulating spouting action with corn-shaped particles, but it depended strongly on the number and the arrangement of the spherical elements. Gas–solid flow patterns, pressure drop, particle velocity and particle concentration at various spouting gas velocity were discussed. The results showed that particle velocity reaches a maximum at the axis and then decreases gradually along the radial direction in the whole bed. Particle concentration increases along the radial direction in the spout region but decreases in the fountain region, while it is nearly constant in the annulus region. Increasing spouting gas velocity leads to larger pressure drop, remarkably increased speed of particle moving upward or downward, but decreased particle concentration.  相似文献   

6.
Accurate information concerning riser inventory in a fluidized bed is required in some applications such as the calcium looping process, because it is related to the CO2 capture efficiency of the system. In a circulating fluidized bed (CFB), the riser inventory is normally calculated from the riser pressure drop; however, the friction and the acceleration phenomena may have a significant influence on the total riser pressure drop. Therefore, deviation may occur in the calculation from the actual mass. For this reason the magnitude of the friction and the acceleration pressure drop in the entire riser is studied in small-scale risers. Two series of studies were performed: the first one in a scaled cold model riser of the 10 kWth facility, and the second one in the 10 kWth fluidized bed riser under process conditions. The velocities were chosen to comply with the fluidization regimes suitable for the calcium looping process, namely, the turbulent and the fast. In cold-model experiments in a low-velocity turbulent fluidization regime, the actual weight (static pressure drop) of the particles is observed more than the weight calculated from a recorded pressure drop. This phenomenon is also repeated in pilot plant conditions. In the cold-model setup, the friction and acceleration pressure drop became apparent in the fast fluidization regime, and increased as the gas velocity rose. Within calcium looping conditions in the pilot plant operation, the static pressure drop was observed more than the recorded pressure drop. Therefore, as a conservative approach, the influence of friction pressure drop may be neglected while calculating the solid inventory of the riser. The concept of transit inventory is introduced as a fraction of total inventory, which lies in freefall zones of the CFB system. This fraction increases as gas velocity rises.  相似文献   

7.
The hydrodynamics and energy consumption have been studied in a cold flow, bubbling and turbulent, pressurized gas–liquid–solid three-phase fluidized bed (0.15 m ID × 1 m height) with concurrent gas–liquid up flow is proposed with the intention of increasing the gas hold up. The hydrodynamic behaviour is described and characterised by some specific gas and liquid velocities. Particles are easily fluidized and can be uniformly distributed over the whole height of the column. The effect of parameters like liquid flow rate, gas flow rate, particle loading, particle size, and solid density on gas hold up and effect of gas flow rate, solid density and particle size on solid hold up, energy consumption and minimum fluidization velocity has been studied. At the elevated pressures a superior method for better prediction of minimum fluidization velocity and terminal settling velocities has been adopted. The results have been interpreted with Bernoulli’s theorem and Richardson–Zaki equation. Based on the assumption of the gas and liquid as a pretend fluid, a simplification has been made to predict the particle terminal settling velocities. The Richardson–Zaki parameter n′ was compared with Renzo’s results. A correlation has been proposed with the experimental results for the three-phase fluidization.  相似文献   

8.
Euler-Euler two-fluid model is used to simulate the hydrodynamics of gas-solid flow in a bubbling flu- idized bed with Geldert B particles where the solid property is calculated by applying the kinetic theory of granular flow (KTGF). Johnson and Jackson wall boundary condition is used for the particle phase, and different amount of slip between particle and wall is given by varying the specularity coefficient (φ) from 0 to 1. The simulated particle velocity, granular temperature and particle volume fraction are compared to investigate the effect of different wall boundary conditions on the hydrodynamic behavior, Some of the results are also compared with the available experimental data from the literature. It was found that the model predictions are sensitive to the specularity coefficient. The hydrodynamic behavior deviated sig- nificantly for φ = 0 and φ = 0.01 with maximum deviation found at φ = 0 i.e. free-slip condition. However, the overall bed height predicted by all the conditions is similar.  相似文献   

9.
Fluidized bed agglomeration is an important and challenging problem for thermal cracking in fluid cokers. A low coker temperature can be problematic because the bitumen is injected into the fluidized bed with a different viscosity, resulting in formation of agglomerates of varying sizes, which slows the cracking reactions. In the present study, the bed material agglomeration process during nozzle injection of multiviscosity liquid was investigated in a fluidized bed operated at different mass ratios of the atomization gas to the liquid jets (GLR = 1%–3.5%) and gas velocities (3.9Umf and 5.9Umf) based on a conductance method using a water–sand system to simulate the hot bitumen–coke system at room temperature. During the tests of liquid-jet dispersion throughout the bed, different agglomeration stages are observed at both gas velocities. The critical amount of tert-butanol in the liquid jets that could lead to severe agglomeration of the bed materials (poor fluidization) at GLR = 1% is about 10 wt% at the low fluidizing gas velocity (3.9Umf) and 18 wt% at the high gas velocity (5.9Umf). This study provides a new approach for on-line monitoring of bed agglomeration during liquid injection to guarantee perfect contact between the atomized liquid and the bed particles.  相似文献   

10.
Measurement of temperature profiles of gas-solid two-phase flow at different heights in commercial-scale circulating fluidized bed (CFB) boilers was carried out. Experimental results showed that the thickness of thermal boundary layer was generally independent of the distance from the air distributor, except when close to the riser outlet. Through analysis of flow and combustion characteristics in the riser, it was found that the main reasons for the phenomena were: 1) the hydrodynamic boundary layer was thinner than the thermal layer and hardly changed along the CFB boiler height, and 2) both radial and axial mass and heat exchanges were strong in the CFB boiler. Numerical simulation of gas flow in the outlet zone confirmed that the distribution of the thermal boundary layer was dominated by the flow field characteristics.  相似文献   

11.
A computational fluid dynamics (CFD) model is used to investigate the hydrodynamics of a gas–solid fluidized bed with two vertical jets. Sand particles with a density of 2660 kg/m3 and a diameter of 5.0 × 10?4 m are employed as the solid phase. Numerical computation is carried out in a 0.57 m × 1.00 m two-dimensional bed using a commercial CFD code, CFX 4.4, together with user-defined Fortran subroutines. The applicability of the CFD model is validated by predicting the bed pressure drop in a bubbling fluidized bed, and the jet detachment time and equivalent bubble diameter in a fluidized bed with a single jet. Subsequently, the model is used to explore the hydrodynamics of two vertical jets in a fluidized bed. The computational results reveal three flow patterns, isolated, merged and transitional jets, depending on the nozzle separation distance and jet gas velocity and influencing significantly the solid circulation pattern. The jet penetration depth is found to increase with increasing jet gas velocity, and can be predicted reasonably well by the correlations of Hong et al. (2003) for isolated jets and of Yang and Keairns (1979) for interacting jets.  相似文献   

12.
Gas–solid flow in a fluid catalytic cracking (FCC) riser exhibits poor mixing in the form of a core–annulus flow pattern and a dense bottom/dilute top distribution of solids. To enhance gas–solid mixing, studies on dense fluidized beds have suggested using a pulsating flow of gas. The present study investigates the effect of pulsating flow on gas–solid hydrodynamics inside the FCC riser employing computational fluid dynamics. Two flow conditions are investigated: a cold flow of air-FCC catalyst in a pilot-scale riser and a reactive flow in an industrial-scale FCC riser. In the cold-flow riser, pulsating flows cause the slug flow of solids and thus increase the average solid accumulation in the flow domain and solid segregation towards the wall. In the industrial FCC riser, pulsating flows produce radial profiles that are more homogeneous. Pulsating flows further improve the conversion and yield in the initial few metres of height. At 7 m, the conversion from pulsating flow is 59%, compared with 44% in without pulsating flow. The results and analysis presented here will help optimize flow conditions in the circulating fluidized bed riser, in not only FCC but also applications such as fast pyrolysis and combustion.  相似文献   

13.
To study olefin reduction by using an auxiliary reactor for FCC naphtha upgrading, a large-scale cold model of a riser-bed coupled to an upper fluidized bed was established. The effect of static bed height in the upper fluidized bed on narticle flow behavior in the lower riser was investigated experimentally. A restriction index of solids holdup was used to evaluate quantitatively the restrictive effect of the upper fluidized bed. Experimental results show that, under the restrictive effect of the upper fluidized bed, the riser could be divided into three regions in the longitudinal direction: accelerating, fully developed and restriction. The axial distribution of solids holdup in the riser is characterized by large solids holdup in the top and bottom sections and small solids holdup in the middle section. Overall solids holdup increased with increasing static bed height in the upper fluidized bed, while particle velocity decreased. Such restrictive effect of the upper fluidized bed could extend from the middle and top sections to the whole riser volume when riser outlet resistance is increased, which increases with increasing static bed height in the upper fluidized bed. The upper bed exerts the strongest restriction on the area close to the riser outlet.  相似文献   

14.
To study olefin reduction by using an auxiliary reactor for FCC naphtha upgrading, a large-scale cold model of a riser-bed coupled to an upper fluidized bed was established. The effect of static bed height in the upper fluidized bed on particle flow behavior in the lower riser was investigated experimentally. A restriction index of solids holdup was used to evaluate quantitatively the restrictive effect of the upper fluidized bed. Experimental results show that, under the restrictive effect of the upper fluidized bed, the riser could be divided into three regions in the longitudinal direction: accelerating, fully developed and restriction. The axial distribution of solids holdup in the riser is characterized by large solids holdup in the top and bottom sections and small solids holdup in the middle section. Overall solids holdup increased with increasing static bed height in the upper fluidized bed, while particle velocity decreased. Such restrictive effect of the upper fluidized bed could extend from the middle and top sections to the whole riser volume when riser outlet resistance is increased, which increases with increasing static bed height in the upper fluidized bed. The upper bed exerts the strongest restriction on the area close to the riser outlet.  相似文献   

15.
The hydrodynamic characteristics of a rectangular gas-driven inverse liquid-solid fluidized bed (GDFB) using particles of different diameters and densities were investigated in detail. Rising gas bubbles cause a liquid upflow in the riser portion, enabling a liquid downflow that causes an inverse fluidization in the downer portion. Four flow regimes (fixed bed regime, initial fluidization regime, complete fluidization regime, and circulating fluidization regime) and three transition gas velocities (initial fluidization gas velocity, minimum fluidization gas velocity, and circulating fluidization gas velocity) were identified via visual observation and by monitoring the variations in the pressure drop. The axial local bed voidage (ε) of the downer first decreases and then increases with the increase of the gas velocity. Both the liquid circulation velocity and the average particle velocity inside the downer increase with the increase of the gas velocity in the riser, but decrease with the particle loading. An empirical formula was proposed to successfully predict the Richardson-Zaki index “n”, and the predicted ε obtained from this formula has a ±5% relative error when compared with the experimental ε.  相似文献   

16.
In order to develop the interfacial area transport equation for the interfacial transfer terms in the two-fluid model, accurate data sets on axial development of local parameters such as void fraction, interfacial area concentration, interfacial gas velocity and Sauter mean diameter are indispensable to verify the modeled source and sink terms in the interfacial area transport equation. From this point of view, local measurements of both group 1 spherical/distorted bubbles and group 2 cap/slug bubbles in vertical upward air–water two-phase flow in a large diameter pipe with 200 mm in inner diameter and 26 m in height were performed at three axial locations of z/D = 41.5, 82.8 and 113 as well as 11 radial locations from r/R = 0–0.95 by using four-sensor probe method. Here, z, r, D and R are the axial distance from the inlet, radial distance from the pipe center, pipe diameter and pipe radius, respectively. The liquid flow rate and the void fraction ranged from 0.0505 m/s to 0.312 m/s and from 1.98% to 32.6%, respectively in the present experiment. The flow condition covered extensive region of bubbly flow, cap turbulent flow as well as their transition. The extensive analysis on the radial profiles of local flow parameters and their axial developments demonstrate the development of interfacial structures along the flow direction due to the bubble coalescence and breakup and the gas expansion. The significant decrease in void faction and interfacial area concentration and the increase in Sauter mean diameter and interfacial velocity were observed when the gradual flow regime transition occurred. Finally, the net change in the interfacial area concentration due to the bubble coalescence and breakup was quantitatively investigated in the present paper to reflect the true transfer mechanisms in observed two-phase flows.  相似文献   

17.
A new first degree solids mixing rate is proposed to evaluate the mixing of solids in small scale fluidized beds. Particle mixing experiments were carried out in a 2D fluidized bed with a cross-section of 0.02 m × 0.2 m and a height of 1 m. White and black particles with average diameters of 850 and 450 μm were used in our experiments. Image processing was used to measure the concentration of the tracers at different times. The effects of four representative operating parameters (superficial gas velocity, ratio of tracer particles to bed particles, tracer particle position, and particle size) on mixing are discussed with reference to the mixing index. We found that the Lacey index depends on the concentration of the tracers. The position of the tracers affects the initial mixing rate but not the final degree of mixing. However, the new mixing rate equation does not depend on the initial configuration of the particles because this situation is considered to be the initial condition. Using the data obtained in this work and that found in literature, an empirical correlation is proposed to evaluate the mixing rate constant as a function of dimensionless numbers (Archimedes, Reynolds, and Froude) in small scale fluidized beds. This correlation allows for an estimation of the mixing rate under different operating conditions and for the detection of the end point and/or the time of mixing.  相似文献   

18.
Fluidized beds with multiple jets have widespread industrial applications. The objective of this paper is to investigate the jet interactions and hydrodynamics of a fluidized bed with multiple jets. Discrete element modeling coupled with in-house CFD code GenIDLEST has been used to simulate a bed with nine jets. The results are compared with published experiments. Mono dispersed particles of size 550 μm are used with 1.4 times the minimum fluidization velocity of the particles. Both two and three dimensional computations have been performed. To the best of our knowledge, the results presented in this paper are the first full 3D simulations of a fluidized bed performed with multiple jets. Discrepancies between the experiment and simulations are discussed in the context of the dimensionality of the simulations. The 2D solid fraction profile compares well with the experiment close to the distributor plate. At higher heights, the 2D simulation over-predicts the solid fraction profiles near the walls. The 3D simulation on the other hand is better able to capture the solid fraction profile higher up in the bed compared to that near the distributor plate. Similarly, the normalized particle velocities and the particle fluxes compare well with the experiment closer to the distributor plate for the 2D simulation and the freeboard for the 3D simulation, respectively. A lower expanded bed height is predicted in the 2D simulation compared to the 3D simulation and the experiment. The results obtained from DEM computations show that a 2D simulation can be used to capture essential jetting trends near the distributor plate regions, whereas a full scale 3D simulation is needed to capture the bubbles near the freeboard regions. These serve as validations for the experiment and help us understand the complex jet interaction and solid circulation patterns in a multiple jet fluidized bed system.  相似文献   

19.
A non-intrusive vibration monitoring technique was used to study the hydrodynamics of a gas–solid fluidized bed. Experiments were carried out in a 15 cm diameter fluidized bed using 226, 470 and 700 μm sand particles at various gas velocities, covering both bubbling and turbulent regimes. Auto correlation function, mutual information function, Hurst exponent analysis and power spectral density function were used to analyze the fluidized bed hydrodynamics near the transition point from bubbling to turbulent fluidization regimes. The first pass of the autocorrelation function from one half and the time delay at which it becomes zero, and also the first minimum of the mutual information, occur at a higher time delay in comparison to stochastic systems, and the values of time delays were maximum at the bubbling to turbulent transition gas velocity. The maximum value of Hurst exponent of macro structure occurred at the onset of regime transition from bubbling to turbulent. Further increase in gas velocity after that regime transition velocity causes a decrease in the Hurst exponent of macro structure because of breakage of large bubbles to small ones. The results showed these methods are capable of detecting the regime transition from bubbling to turbulent fluidization conditions using vibration signals.  相似文献   

20.
Magnetic resonance imaging (MRI) has been used to study the behaviour of jets at the distributor of a 50 mm diameter fluidised bed of 0.5 mm diameter poppy seeds. Two perforated-plate distributors were examined, containing either 10 or 14 holes, each 1 mm diameter. Ultra-fast MR imaging was able to show the transient nature of the upper parts of the jets, where discrete bubbles are formed. Imaging in 3D showed that the central jets were the longest for flow rates below minimum fluidisation. Above minimum fluidisation, the outer jets, nearest the wall of the fluidised bed, arched inward towards the central axis. In this latter case, interpretation of the time-averaged 3D image required the use of ultra-fast MR imaging to identify the approximate height above the distributor at which discrete bubbles were formed. The apparently continuous void extending along the central axis above this height in the time-averaged 3D image was thus identified, using ultra-fast MR imaging, as representing the averaged paths of released bubbles. Time-averaged MR velocity mapping was also used to identify dead zones of stationary particles resting on the distributor between the jets. The dead zones could be observed when the superficial velocity of the gas approached minimum fluidisation, but they were smaller than those observed at lower gas superficial velocity. Comparable images of a single jet through 1.2 mm diameter poppy seeds from MRI and electrical capacitance volume tomography (ECVT) are also demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号