首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, a generalized anisotropic hardening rule based on the Mroz multi-yield-surface model for pressure insensitive and sensitive materials is derived. The evolution equation for the active yield surface with reference to the memory yield surface is obtained by considering the continuous expansion of the active yield surface during the unloading/reloading process. The incremental constitutive relation based on the associated flow rule is then derived for a general yield function for pressure insensitive and sensitive materials. Detailed incremental constitutive relations for materials based on the Mises yield function, the Hill quadratic anisotropic yield function and the Drucker–Prager yield function are derived as the special cases. The closed-form solutions for one-dimensional stress–plastic strain curves are also derived and plotted for materials under cyclic loading conditions based on the three yield functions. In addition, the closed-form solutions for one-dimensional stress–plastic strain curves for materials based on the isotropic Cazacu–Barlat yield function under cyclic loading conditions are summarized and presented. For materials based on the Mises and the Hill anisotropic yield functions, the stress–plastic strain curves show closed hysteresis loops under uniaxial cyclic loading conditions and the Masing hypothesis is applicable. For materials based on the Drucker–Prager and Cazacu–Barlat yield functions, the stress–plastic strain curves do not close and show the ratcheting effect under uniaxial cyclic loading conditions. The ratcheting effect is due to different strain ranges for a given stress range for the unloading and reloading processes. With these closed-form solutions, the important effects of the yield surface geometry on the cyclic plastic behavior due to the pressure-sensitive yielding or the unsymmetric behavior in tension and compression can be shown unambiguously. The closed form solutions for the Drucker–Prager and Cazacu–Barlat yield functions with the associated flow rule also suggest that a more general anisotropic hardening theory needs to be developed to address the ratcheting effects for a given stress range.  相似文献   

2.
The uniaxial and non-proportionally multiaxial ratcheting behaviors of SS304 stainless steel at room temperature were initially researched by experiment and then were theoretically described by a cyclic constitutive model in the framework of unified visco-plasticity. The effects of cyclic stress amplitude, mean stress, and their histories on the ratcheting were experimentally investigated under uniaxial and different multiaxial loading paths. The shapes of non-proportional loading paths were linear, circular, elliptical and rhombic, respectively. In the constitutive model, the rate-dependent behavior of the material was reflected by a viscous term; the cyclic flow and cyclic hardening behaviors of the material under asymmetrical stress-controlled cycling were reflected by the evolution rules of kinematic hardening back stress and isotropic deforming resistance, respectively. The effect of loading history on the ratcheting was also considered by introducing two fading memorization functions for maximum inelastic strain amplitude and isotropic deformation resistance, respectively, into the constitutive model. The effect of multiaxial loading path on the ratcheting was reflected by a non-proportional factor defined in this work. The predicting ability of the developed model was proved to be good by comparing the simulations with corresponding experiments.  相似文献   

3.
Cyclic plasticity experiments were conducted on a pure polycrystalline copper and the material was found to display significant cyclic hardening and nonproportional hardening. An effort was made to describe the cyclic plasticity behavior of the material. The model is based on the framework using a yield surface together with the Armstrong–Frederick type kinematic hardening rule. No isotropic hardening is considered and the yield stress is assumed to be a constant. The backstress is decomposed into additive parts with each part following the Armstrong–Frederick type hardening rule. A memory surface in the plastic strain space is used to account for the strain range effect. The Tanaka fourth order tensor is used to characterize nonproportional loading. A set of material parameters in the hardening rules are related to the strain memory surface size and they are used to capture the strain range effect and the dependence of cyclic hardening and nonproportional hardening on the loading magnitude. The constitutive model can describe well the transient behavior during cyclic hardening and nonproportional hardening of the polycrystalline copper. Modeling of long-term ratcheting deformation is a difficult task and further investigations are required.  相似文献   

4.
循环硬化材料本构模型的隐式应力积分和有限元实现   总被引:1,自引:0,他引:1  
针对新发展的、能够描述循环硬化行为应变幅值依赖性的粘塑性本构模型,讨论了它的数值实现方法。首先,为了能够对材料的循环棘轮行为(Ratcheting)和循环应力松弛现象进行描述,对已有的本构模型进行了改进;然后,在改进模型的基础上,建立了一个新的、全隐式应力积分算法,进而推导了相应的一致切线刚度(Consistent Tangent Modulus)矩阵的表达式;最后,通过ABAQUS用户材料子程序UMAT将上述本构模型进行了有限元实现,并通过一些算例对一些构件的循环变形行为进行了有限元数值模拟,讨论了该类本构模型有限元实现的必要性和合理性。  相似文献   

5.
Experimental results of monotonic uniaxial tensile tests at different strain rates and the reversed strain cycling test showed the characteristics of rate-dependence and cyclic hardening of Z2CND18.12N austenitic stainless steel at room temperature, respectively. Based on the Ohno-Wang kinematic hardening rule, a visco-plastic constitutive model incorporated with isotropic hardening was developed to describe the uniaxial ratcheting behavior of Z2CND18.12N steel under various stress-controlled loading conditions. Predicted results of the developed model agreed better with experimental results when the ratcheting strain level became higher, but the developed model overestimated the ratcheting deformation in other cases. A modified model was proposed to improve the prediction accuracy. In the modified model, the parameter mi of the Ohno-Wang kinematic hardening rule was developed to evolve with the accumulated plastic strain. Simulation results of the modified model proved much better agreement with experiments.  相似文献   

6.
Uniaxial ratcheting and fatigue failure of tempered 42CrMo steel were observed by the tests under the uniaxial stress-controlled cyclic loading with non-zero mean stress [G.Z. Kang, Y.J. Liu, Mater. Sci. Eng. A 472 (2008) 258–268]. Based on the obtained experimental results, the evolution features of whole-life ratcheting behavior and low-cycle fatigue (LCF) damage of the material were discussed first. Then, in the framework of unified visco-plasticity and continuum damage mechanics, a damage-coupled visco-plastic cyclic constitutive model was proposed to simulate the whole-life ratcheting and predict the fatigue failure life of the material presented in the uniaxial stress cycling with non-zero mean stress. In the proposed model, the damage was divided into two parts, i.e., elastic damage and plastic damage, which were described by the evolution equations with the same form but different constants, since the maximum applied stresses in most of loading cases were lower than the nominal yielding strength of the material. The ratcheting of the material was still described by employing a nonlinear kinematic hardening rule based on the Abdel-Karim–Ohno combined kinematic hardening model [M. Abdel Karim, N. Ohno, Int. J. Plast. 16 (2000) 225–240] but extended by considering the effect of damage. The maximum strain criterion combined with an elastic damage threshold was employed to determine the failure life of the material caused by two different failure modes, i.e., fatigue failure (caused by low-cycle fatigue due to plastic shakedown) and ductile failure (caused by large ratcheting strain). The simulated whole-life ratcheting behavior and predicted failure life of tempered 42CrMo steel are in a fairly good agreement with the experimental ones.  相似文献   

7.
Uniaxial ratcheting and failure behaviors of two steels   总被引:2,自引:0,他引:2  
The strain cyclic characteristics, ratcheting and failure behaviors of 25CDV4.11 steel and SS304 stainless steel were experimentally studied under uniaxial cyclic tests and at room temperature. The cyclic hardening/softening features of the materials were first observed under uniaxial strain cycling; and then the ratcheting and failure behaviors of the materials were researched in detail under cyclic stressing. The effects of stress amplitude and mean stress on the ratcheting and failure were discussed under uniaxial asymmetrical stress cycling. It is concluded that the ratcheting and failure behaviors of the materials depend greatly on the cyclic softening/hardening features of the materials and the stress values of cyclic loading. Some conclusions useful to understand the fatigue failure of the materials presented under asymmetrical cyclic stressing are obtained.  相似文献   

8.
304不锈钢室温和高温单轴循环塑性的实验研究   总被引:2,自引:0,他引:2  
对304不锈钢进行了室温和高温单轴应变控制和应力控制下的系统循环试验。揭示和分析了循环应变幅值、平均应变及其历史和温度历史对材料应变循环特性的影响以及应力幅值、平均应力及其历史以及温度对循环棘轮行为的影响。也讨论了应变循环和应力循环间交互作用对材料循环塑性行为的影响。研究表明,无益单轴应变循环特性还是非对称单轴应力循环下的棘轮效应不仅取决于当前温度和加载状态,而且强烈依赖于其加载历史。研究得到了一些有助于304不锈钢室温和高温单轴循环行为本构描述的结果。  相似文献   

9.
Ratcheting is defined as the accumulation of plastic strains during cyclic plastic loading. Modeling this behavior is extremely difficult because any small error in plastic strain during a single cycle will add to become a large error after many cycles. As is typical with metals, most constitutive models use the associative flow rule which states that the plastic strain increment is in the direction normal to the yield surface. When the associative flow rule is used, it is important to have the shape of the yield surface modeled accurately because small deviations in shape may result in large deviations in the normal to the yield surface and thus the plastic strain increment in multi-axial loading. During cyclic plastic loading these deviations will accumulate and may result in large errors to predicted strains.This paper compares the bi-axial ratcheting simulations of two classes of plasticity models. The first class of models consists of the classical von Mises model with various kinematic hardening (KH) rules. The second class of models introduce directional distortional hardening (DDH) in addition to these various kinematic hardening rules. Directional distortion describes the formation of a region of high curvature on the yield surface approximately in the direction of loading and a region of flattened curvature approximately in the opposite direction. Results indicate that the addition of directional distortional hardening improves ratcheting predictions, particularly under biaxial stress controlled loading, over kinematic hardening alone.  相似文献   

10.
杨超  吴昊 《固体力学学报》2021,42(5):518-531
本文对316L不锈钢进行了单轴与多轴非比例路径下的应力控制棘轮试验,考察了应力幅值、平均应力和加载历程对棘轮特性的影响。同时进行了应变控制循环试验以研究材料的应力松弛特性。试验结果表明轴向棘轮效应在对称剪切荷载下效果明显,同时棘轮应变随应力幅值和平均应力的增加而增加。研究了Chen-Jiao随动强化模型与Jiang-Sehitoglu随动强化模型采用的单轴与多轴参数对背应力分量增量方向的影响,将Chen-Jiao模型中的多轴系数替换为界面饱和率,并在此基础上引入新的参数对塑性模量系数进行修正,计算结果表明修正后的模型能提升应力控制下多轴棘轮的预测精度,并能很好的预测应力松弛现象,表明了新模型的正确性与有效性。  相似文献   

11.
This paper critically evaluates the performance of five constitutive models in predicting ratcheting responses of carbon steel for a broad set of uniaxial and biaxial loading histories. The models proposed by Prager, Armstrong and Frederick, Chaboche, Ohno-Wang and Guionnet are examined. Reasons for success and failure in simulating ratcheting by these models are elaborated. The bilinear Prager and the nonlinear Armstrong-Frederick models are found to be inadequate in simulating ratcheting responses. The Chaboche and Ohno-Wang models perform quite well in predicting uniaxial ratcheting responses; however, they consistently overpredict the biaxial ratcheting responses. The Guionnet model simulates one set of biaxial ratcheting responses very well, but fails to simulate uniaxial and other biaxial ratcheting responses. Similar to many earlier studies, this study also indicates a strong influence of the kinematic hardening rule or backstress direction on multiaxial ratcheting simulation. Incorporation of parameters dependent on multiaxial ratcheting responses, while dormant for uniaxial responses, into Chaboche-type kinematic hardening rules may be conducive to improve their multiaxial ratcheting simulations. The uncoupling of the kinematic hardening rule from the plastic modulus calculation is another potentially viable alternative. The best option to achieve a robust model for ratcheting simulations seems to be the incorporation of yield surface shape change (formative hardening) in the cyclic plasticity model.  相似文献   

12.
本文提出全新的有限弹塑性J2流方程,用来显式、精确地模拟SMAs(形状记忆合金)材料在循环加载-卸载条件下从塑性逐渐转变为伪弹性的变形行为.首先,改进流动法,使得本构方程耦合屈服中心的移动和屈服面的增大,并改进背应力演化方程,使模型可以产生强烈的包辛格效应,从理论上具备模拟SMAs独特变形行为的能力;其次,构造全过程下的统一硬化函数显式表达式,代入本构方程后能得到符合要求的形函数;再次,利用选定的数据点构造统一光滑的上屈服函数,再利用上下屈服应力之间的一种线性关系,推导得到下屈服阶段的形函数;最后,只需要给定一个参数就可以得到单个循环结果,利用拉格朗日插值方法构建参数随循环次数变化的函数,就可以模拟任意循环荷载下的变形行为.通过模型结果和实验数据对比证明新方法的有效性.  相似文献   

13.
This paper is concerned with an application of the multi-surface plasticity in solid mechanics and geotechnical problems. The model is of a von-Mises type with associated flow rule, originally proposed by Montans. The Mroz translation rule is implemented to the movements of the yield surfaces and the fully implicit scheme with radial mapping method is applied in numerical computations. Algorithmic consistent tangent modulus with numerical integration algorithm of constitutive equations is extracted. The model is developed in the class of kinematic hardening models, so the ‘Masing’ rule is preserved. The model is able to consider the plastic strain accumulation in constant axial stress state, such as ratcheting. The implementation is validated by means of a simple deformation path of combined extension and compression test, a pure shear test with pseudo-random loading, a test which demonstrates the capabilities of the model in simulation of cyclic loading and ratcheting, a cyclic shear test in saturated undrained sand and finally, the analysis of a plate with holes, which presents the shear band using the multi-surface plasticity model.  相似文献   

14.
This paper evaluates the performance of four Ohno–Wang type constitutive models in predicting ratcheting responses of medium carbon steel S45C for a set of axial/torsional loading paths. Suggestions are also made for further modification. The four models are the Ohno–Wang model, the McDowell model, the Jiang–Sehitoglu model and the AbdelKarim–Ohno model. It is shown that the Ohno–Wang model and the McDowell model overestimate the multiaxial ratcheting. Whereas, the Jiang–Sehitoglu model yields good predictions for most loading conditions used in this study with an appropriate modification of the dynamic recovery term. The AbdelKarim–Ohno model gives acceptable predictions for all considered multiaxial conditions when used with an evolution function for μi, but gives poor predictions of uniaxial ratcheting if the parameter μi is determined from a multiaxial ratcheting response. A new modified Ohno–Wang hardening rule is proposed for better adaptability under diverse situations by multiplying a factor to the dynamic recovery term, which is dependent on noncoaxiality of the plastic strain rate and back stress. This new model predicts ratcheting strain reasonably well for the test cases.  相似文献   

15.
在Valanis的内时本构理论的框架中,引入内结构张量以反映由于非比例加载而引起金属材料的附加等向强化及异向强化效应,同时提出材料强化程度的度量采用沿路径法线方向的塑性应变分量来描述.这些考虑的有效性已经通过用所建模型对304不锈钢材料在一些典型非比例循环加载路径下的响应进行的理论预测得到了验证;将该模型应用于U71Mn材料室温单轴棘轮行为描述中,结果显示内结构张量的引入不仅能较好地反映应变控制下的非比例附加效应,而且也能较好地反映应力控制下塑性应变的累积及变化率.  相似文献   

16.
The Ohno–Wang kinematic hardening rule is modified to incorporate the Burlet–Cailletaud radial evanescence term for an improved simulation of the ratcheting behavior. The Delobelle parameter δ is implemented in the modified model to compromise shakedown of the Burlet–Cailletaud hardening rule and over-prediction of the Ohno–Wang model. An evolution equation is proposed for δ to simulate the ratcheting strain over an extended domain of cycles. Ratcheting tests were conducted on S45C steel under four types of nonproportional axial–torsional loading. The new model is found to yield reasonably accurate predictions of ratcheting strain to a much higher number of cycles compared with other studies.  相似文献   

17.
A nonlinear kinematic hardening rule is developed here within the framework of thermodynamic principles. The derived kinematic hardening evolution equation has three distinct terms: two strain hardening terms and a dynamic recovery term that operates at all times. The proposed hardening rule, which is referred in this paper as the FAPC (Fredrick and Armstrong–Phillips–Chaboche) kinematic hardening rule, shows a combined form of the Frederick and Armstrong backstress evolution equation, Phillips evolution equation, and Chaboche series rule. A new term is incorporated into the Frederick and Armstrong evolution equation that appears to have agreement with the experimental observations that show the motion of the center of the yield surface in the stress space is directed between the gradient to the surface at the stress point and the stress rate direction at that point. The model is further modified in order to simulate nonproportional cyclic hardening by proposing a measure representing the degree of nonproportionality of loading. This measure represents the topology of the incremental stress path. Numerically, it represents the angle between the current stress increment and the previous stress increment, which is interpreted through the material constants of the kinematic hardening evolution equation. This new kinematic hardening rule is incorporated in a material constitutive model based on the von Mises plasticity type and the Chaboche isotropic hardening type. Numerical integration of the incremental elasto-plastic constitutive equations is based on a simple semi-implicit return-mapping algorithm and the full Newton–Raphson iterative method is used to solve the resulting nonlinear equations. Experimental simulations are conducted for proportional and non-proportional cyclic loadings. The model shows good correlation with the experimental results.  相似文献   

18.
S30408奥氏体不锈钢因其优异的力学性能和耐低温性能而被广泛用于制作LNG等低温罐车罐体的内容器。此类罐体的内容器在其支撑部位不但承受内压引起的恒定应力还会承受惯性载荷引起的交变应力,容易发生渐进的塑性应变累积即棘轮效应。但目前还缺乏有效预测S30408低温棘轮效应的本构描述。利用几种较为先进的本构模型对低温S30408奥氏体不锈钢棘轮应变进行模拟,发现这些本构模型存在循环初期过低预测和循环后期过高预测的缺点,并且这种过高预测会随着循环圈数的增加而增大。基于Ohno - Wang II模型,关联形变马氏体含量与各向同性强化与随动强化,并给出马氏体极限含量dL的演化规律,进而提出一种含马氏体相变的循环塑性本构模型。与其它模型相比,该模型能有效改善在循环初期预测值过低和后期预测值过高的情况,同时能够较好地预测循环加载过程中形变马氏体的含量。  相似文献   

19.
In a search for a constitutive model for ratcheting simulations, the models by Chaboche, Ohno–Wang, McDowell, Jiang–Sehitoglu, Voyiadjis–Basuroychowdhury and AbdelKarim–Ohno are evaluated against a set of uniaxial and biaxial ratcheting responses. With the assumption of invariant shape of the yield surface during plastic loading, the ratcheting simulations for uniaxial loading are primarily a function of the plastic modulus calculation, whereas the simulations for multiaxial loading are sensitive to the kinematic hardening rule of a model. This characteristic of the above mentioned models is elaborated in this paper. It is demonstrated that if all parameters of the kinematic hardening rule are determined from uniaxial responses only, these parameters primarily enable a better plastic modulus calculation. However, in this case the role of the kinematic hardening rule in representing the ratcheting responses for multiaxial loading is under-appreciated. This realization motivated many researchers to incorporate multiaxial load dependent terms or parameters into the kinematic hardening rule. This paper evaluates some of these modified rules and finds that none is general enough to simulate the ratcheting responses consistently for the experiments considered. A modified kinematic hardening rule is proposed using the idea of Delobelle and his co-workers in the framework of the Chaboche model. This new rule introduces only one multiaxial load dependent parameter to the Chaboche model, but performs the best in simulating all the ratcheting responses considered.  相似文献   

20.
S30408奥氏体不锈钢因其优异的力学性能和耐低温性能而被广泛用于制作LNG等低温罐车罐体的内容器。此类罐体的内容器在其支撑部位不但承受内压引起的恒定应力还会承受惯性载荷引起的交变应力,容易发生渐进的塑性应变累积即棘轮效应。但目前还缺乏有效预测S30408低温棘轮效应的本构描述。利用几种较为先进的本构模型对低温S30408奥氏体不锈钢棘轮应变进行模拟,发现这些本构模型存在循环初期过低预测和循环后期过高预测的缺点,并且这种过高预测会随着循环圈数的增加而增大。基于Ohno - Wang II模型,关联形变马氏体含量与各向同性强化与随动强化,并给出马氏体极限含量dL的演化规律,进而提出一种含马氏体相变的循环塑性本构模型。与其它模型相比,该模型能有效改善在循环初期预测值过低和后期预测值过高的情况,同时能够较好地预测循环加载过程中形变马氏体的含量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号