首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents a solution method to analyze the geometrically nonlinear response of a patch-repaired flat panel (skin) with a cutout under general loading conditions. The effect of induced stiffening due to tensile loading on the in-plane and, particularly, the out-of-plane behaviors of the patch-repaired skin are investigated. The damage to the skin is represented in the form of a cutout under the patch. The patch with tapered edges is free of external tractions. The skin is subjected to general boundary and loading conditions along its external edge. The solution method provides the transverse shear and normal stresses in the adhesive between the skin and the patch, and in-plane and bending stresses in the patch and skin. Both the patch and skin are made of linearly elastic composite laminates, and the adhesive between them is homogeneous and isotropic, exhibiting a bi-linear elastic behavior. Modified Green’s strain–displacement relations in conjunction with von Karman assumptions are employed in determining the in-plane strains in the skin and patch; however, the transverse shear strains in the adhesive are determined based on the shear-lag theory. The present solution method utilizes the principle of virtual work in conjunction with complex potential functions.  相似文献   

2.
First order shear deformation theory is applied to analyze the behavior of one-side (unbalanced) and two-side (balanced) patched lap joints containing initial through cracks. The joints are made of adherends bonded together by adhesives. An adhesive interface plate element is introduced; it consists of an adhesive layer weighted by influence of the adherend. The thin adhesive layer is assumed to behave elastically and modelled as a simple tension-shear spring. The mathematical model contains layers of adherend and weighted adhesive layer.Finite elements are employed to model the adherend with an 8-node isoparametric plate element and interface layer with a 16-node plate element. Numerical results are obtained for one-side and two-side patches the width of which could be narrower or wider than the crack length. The former leads to bulging and possible peeling while the latter provides better bonding. Stresses and crack-tip stress intensity factors are calculated for different patch thickness. Effectiveness of the weighted adhesive layer model is exhibited by comparing the present results with those found in previous work where the adhesive is modelled as an individual layer.  相似文献   

3.
The mechanics of double-lap joints with unidirectional ([016]) and quasi-isotropic ([0/90/?45/45]2S) composite adherends under tensile loading are investigated experimentally using moiré interferometry, numerically with a finite element method and analytically through a one-dimensional closed-form solution. Full-field moiré interferometry was employed to determine in-plane deformations of the edge surface of the joint overlaps. A linear-elastic two-dimensional finite element model was developed for comparison with the experimental results and to provide deformation and stress distributions for the joints. Shear-lag solutions, with and without the inclusion of shear deformations of the adherend, were applied to the prediction of the adhesive shear stress distributions. These stress distributions and mechanics of the joints are discussed in detail using the results obtained from experimental, numerical and theoretical analyses.  相似文献   

4.
A unified approach for approximating the adhesive stresses in a bond line of a tapered bonded joint or doubler is delineated within the framework of a geometrically nonlinear analysis. The approach follows the Goland–Reissner solution method for a single-lap joint and involves a two-step analysis procedure. The approach also allows for the analysis of a tapered bonded joint and doubler with non-identical adherends. In the first step of the procedure, the two adherends are assumed to be rigidly bonded, and the nonlinear moment distribution along the joint is determined. Since the bending moment solution in this step is simple, it will be derived in closed-form using elementary functions. In the second step analysis, only the overlapped area of the joint is considered with the nonlinear bending moments obtained from the first step at the end of the overlap prescribed as one of its boundary conditions. This latter problem is then solved by using the multi-segment method of integration [Kalnins, A., 1964. Analysis of shell of revolutions subjected to symmetrical and non-symmetrical loads. Journal of Applied Mechanics 31, 1355–1365]. In contrast to the original Goland–Reissner solution method [Goland, M., Reissner, E., 1944. The stresses in cemented joints. Journal of Applied Mechanics 11, A17–A27], the second step analysis can be conducted within both geometrically linear theory and an approximate geometrically nonlinear theory.  相似文献   

5.
This paper presents a novel formulation and analytical solutions for adhesively bonded composite single lap joints by taking into account the transverse shear deformation and large deflection in adherends. On the basis of geometrically nonlinear analysis for infinitesimal elements of adherends and adhesive, the equilibrium equations of adherends are formulated. By using the Timoshenko beam theory, the governing differential equations are expressed in terms of the adherend displacements and then analytically solved for the force boundary conditions prescribed at both overlap ends. The obtained solutions are applied to single lap joints, whose adherends can be isotropic adherends or composite laminates with symmetrical lay-ups. A new formula for adhesive peel stress is obtained, and it can accurately predict peel stress in the bondline. The closed-form analytical solutions are then simplified for the purpose of practical applications, and a new simple expression for the edge moment factor is developed. The numerical results predicted by the present full and simplified solutions are compared with those calculated by geometrically nonlinear finite element analysis using MSC/NASTRAN. The agreement noted validates the present novel formulation and solutions for adhesively bonded composite joints. The simplified shear and peel stresses at the overlap ends are used to derive energy release rates. The present predictions for the failure load of single lap joints are compared with those available in the literature.  相似文献   

6.
In this paper, an improved theoretical interfacial stress analysis is presented for simply supported concrete beam bonded with a FRP plate. The adherend shear deformations have been included in the present theoretical analyses by assuming a linear shear stress through the thickness of the adherends, while all existing solutions neglect this effect. Remarkable effect of shear deformations of adherends has been noted in the results. Indeed, the resulting interfacial stresses concentrations are considerably smaller than those obtained by other models which neglect adherent shear deformations. It is shown that both the normal and shear stresses at the interface are influenced by the material and geometry parameters of the composite beam. This research is helpful for the understanding on mechanical behavior of the interface and design of the FRP–RC hybrid structures.  相似文献   

7.
In this paper, mechanical characteristics (Young’s modulus and shear modulus) of an adhesive are identified using modal based direct model updating method and experimental modal data. The results show that both Young’s and shear moduli of adhesive are frequency dependent. Also, it is demonstrated that the thickness and length of the adhesive-line have influence on these properties. All experiments and subsequent identifications are conducted both in bending and shear modes, and it has been shown that the shear modulus of adhesive is more sensitive to length and thickness variations. The repeatability and consistency of method is proved through repeating the process several times and with different adherends.  相似文献   

8.
This work presents an adhesive model for stress analysis of bonded lap joints, which can be applied to model thin and thick adhesive layers. In this theory, linear variations of displacement components along the adhesive thickness are firstly assumed, and the longitudinal strain and the Poisson's effect of the adhesive are modeled. A differential form of the equilibrium equations for the adherends is analytically solved by means of compatible relations of the adhesive deformation. The derived shear and peel stresses are compared with the classical adhesive model of continuous springs with constant shear and peel stresses, and validated with two-dimensional finite element results of the geometrically nonlinear analysis using a commercial package. The numerical results show that the present linear displacement theory can be applied to both thin and moderately thick adhesive layers. The present formulation of the linear displacement theory is then extended to the higher order displacement theory for stress analysis of a thick adhesive, whose numerical results are also compared with those of the finite element computation.  相似文献   

9.
朱忠猛  杨卓然  蒋晗 《力学学报》2021,53(7):1807-1828
软材料已经在软机器人、生物医学及柔性电子等各个领域得到广泛的应用. 实际应用中, 软材料多需要粘附于不同类型的基底上, 与之共同组成工程构件进而实现特定的功能, 粘接界面性能对构件的结构完整性与功能可靠性起着关键性作用. 本文对目前软材料粘接结构界面破坏行为方面的研究进行了系统总结. 首先通过与传统粘接结构的对比, 指出了“软界面”与“软基体”两种软材料粘接结构界面破坏行为的独特性及其物理本质. 接着分别总结了“软界面”与“软基体”两种粘接结构界面破坏行为的实验表征方面的研究成果, 对界面及基体黏弹性耗散对界面破坏机理的影响分别进行了分析. 然后从理论角度, 介绍了针对两种软材料粘接结构界面破坏行为的理论分析方法, 并对已建立的相关理论模型进行了总结. 之后以内聚力模型方法为基础, 介绍了软材料粘接结构界面破坏行为数值模拟方面的相关研究进展. 最后基于已有的研究成果, 提出了目前研究所面临的挑战, 并对可能的软材料粘接结构界面破坏的未来研究方向进行了讨论和展望.   相似文献   

10.
Dynamic photoelasticity was used to study the stresses when an impulse wave propagates through a single lap joint. An explosive was detonated in one of the adherends. The resulting stress wave propagated down the adherend and through the joint area. At the junction between the adherends, the stress wave interacted with the ends of the adherends and significant changes in the stress wave occurred. The stress wave then propagated through the joint and, in doing so, interacted with the two square corners at the adhesive/adherend interface. It was found that a significant biaxial tensile stress occurs at one of the corners. With only the usual black and white photographs, the ordering and interpretation of the photoelastic-fringe orders was difficult. The paper indicates how color photographs were used to simplify identification of the fringes.  相似文献   

11.
High interfacial stresses at the free edges of adherends are responsible for the debonding failure of adhesively bonded joints (ABJs). In this paper, a general stress-function variational method is formulated to determinate the interfacial shear and normal (peeling) stresses in ABJs in high accuracy. By extending authors’ prior work in stress analysis of bonded joints (Wu and Jenson, 2011), all the planar stress components in the adherends and adhesive layer of an ABJ are expressed in terms of four unknown interfacial stress functions, which are introduced at the upper and lower surfaces of the adhesive layer. A set of governing ordinary differential equations (ODEs) of the four interfacial stress functions is obtained via minimizing the complimentary strain energy of the ABJ, which is further solved by using eigenfunctions. The obtained semi-analytic stress field can satisfy all the traction boundary conditions (BCs) of the ABJ, especially the stress continuity across the bonding lines and the shear-free condition at the ends of adherends and adhesive layer. As an example, the stress field in an adhesively single-sided strap joint is determined by the present method, whose numerical accuracy and reliability are validated by finite element method (FEM) and compared to existing models in the literature. Parameter studies are performed to examine the dependencies of the interfacial stresses of the exemplified ABJ upon the geometries, moduli and temperature change of the adherends and adhesive layer, respectively. The present method is applicable for scaling analysis of joint strength, optimal design of ABJs, etc.  相似文献   

12.
The stress distribution in a scarf joint, with arbitrary angle of scarf, is analyzed as a two dimensional elasticity problem in plane stress. Both the adherend and the adhesive are assumed to be elastic and isotropic. The two adherends may have differing moduli of elasticity. Numerical results are given.  相似文献   

13.
Composite pipes are becoming popular in the offshore oil and gas industry. These pipes are connected to one-another by various configurations of joints. The joints are usually the weakest link in the system. In this investigation we examine the response of various joint configurations subjected to torsion, one of the most common loading conditions in piping systems. Specifically, the theoretical analysis used to evaluate the stress field in the adhesive layers of tubular and socket type bonded sandwich lap joints is presented here. The two adherends of the joints may have different thickness and materials, and the adhesive layer may be flexible or brittle. The analysis is based on the general composite shell theory. The stress concentrations at and near the end of the joints as functions of various parameters, such as the overlap length, and thickness of the adhesive layer are studied. The effects of different adherend thickness ratios, adhesive thickness and overlap length are also studied. Results obtained from the proposed analytical solutions agree well with the results obtained from finite element analysis and those obtained by other workers.  相似文献   

14.
this paper presents a series solution to von Kármán nonlinear equations of a rectilinearly orthotropic rectangular plate under the combined action of lateral load and in-plane tension with the titled edge restraints. In the formulation the edge moments are replaced by an equivalent pressure near the edges. Using generalized double Fourier series for the deflection and stress function, governing equations are reduced to an infinite set of algebraic equations for coefficients in these series. Numerical results for deflections, bending moments and in-plane forces are graphically presented for various values of aspect ratio and material properties and for different edge conditions.  相似文献   

15.
In the present paper, bending and stress analyses of two-directional functionally graded (FG) annular plates resting on non-uniform two-parameter Winkler-Pasternak founda- tions and subjected to normal and in-plane-shear tractions is investigated using the exact three- dimensional theory of elasticity. Neither the in-plane shear loading nor the influence of the two- directional material heterogeneity has been investigated by the researchers before. The solution is obtained by employing the state space and differential quadrature methods. The material proper- ties are assumed to vary in both transverse and radial directions. Three different types of variations of the stiffness of the foundation are considered in the radial direction: linear, parabolic, and sinu- soidal. The convergence analysis and the comparative studies demonstrate the high accuracy and high convergence rate of the present approach. A parametric study consisting of evaluating effects of different parameters (e.g., exponents of the material properties laws, the thickness to radius ratio, trends of variations of the foundation stiffness, and different edge conditions) is carried out. The results are reported for the first time and are discussed in detail.  相似文献   

16.
The BEM is developed for nonlinear free and forced vibrations of circular plates with variable thickness undergoing large deflections. General boundary conditions are considered, which may be also nonlinear. The problem is formulated in terms of displacements. The solution is based on the concept of the analog equation, according to which the two coupled nonlinear differential equations with variable coefficients pertaining to the in-plane radial and transverse deformation are converted to two uncoupled linear ones of a substitute beam with unit axial and unit bending stiffness, respectively, under fictitious quasi-static load distributions. Numerical examples are presented which illustrate the method and demonstrate its accuracy.  相似文献   

17.
内聚力模型的形状对胶接结构断裂过程的影响   总被引:1,自引:0,他引:1  
张军  贾宏 《力学学报》2016,48(5):1088-1095
内聚力模型被广泛应用于粘接结构的断裂数值模拟过程中,为深入分析不同形状内聚力模型与胶黏剂性质和粘接结构断裂之间的关系,本文分别采用脆性和延展性两种类型胶黏剂,对其粘接的对接试件进行了单轴拉伸、剪切实验,以及其粘接的双臂梁试件进行了断裂实验.3种类型的内聚力模型(抛物线型、双线型和三线型)分别模拟了以上粘接结构的断裂过程,并与实验结果进行对比.结果发现:双线型的内聚力模型适用计算脆性胶黏剂的拉伸与剪切的断裂过程;指数型内聚力模型较适合计算延展性胶黏剂的拉伸和剪切的断裂过程,临界应力、断裂能和模型的形状参数是分析拉伸和剪切的重要参数;双臂梁试件的断裂过程模拟结果发现,断裂曲线与胶黏剂性质有关,内聚力模型形状参数也有影响.通过实验与计算结果分析,双线型内聚力模型更适合脆性胶黏剂粘接的双臂梁断裂计算,而三线型更适合计算延展性胶黏剂粘接的双臂梁断裂过程,此研究结果对胶黏剂的使用和粘接结构的断裂分析有很重要意义.  相似文献   

18.
Free transverse vibrations of nonhomogeneous orthotropic rectangular plates with bilinear thickness variation resting on Winkler foundation are presented here using two dimensional boundary characteristic orthogonal polynomials in the Rayleigh-Ritz method on the basis of classical plate theory. Gram-Schmidt process has been used to generate orthogonal polynomials. The nonhomogeneity of the plate is assumed to arise due to linear variations in elastic properties and density of the plate material with the in-plane coordinates. The two dimensional thickness variation is taken as the Cartesian product of linear variations along the two concurrent edges of the plate. Effect of nonhomogeneity parameters, aspect ratio and thickness variation together with foundation parameter on the natural frequencies has been illustrated for the first three modes of vibration for four different combinations of clamped, simply supported and free edges correct to four decimal places. Three dimensional mode shapes for specified plate for all the four boundary conditions have been plotted. A comparison of results in special cases with published one has been presented.  相似文献   

19.
硬夹心矩形夹层板的整体稳定性分析   总被引:1,自引:0,他引:1  
摘要:本文在Reissner型理论给出的位移模式基础上,修正其软夹心假设,考虑夹心层面内刚度,给出了硬夹心夹层板的几何方程、物理方程,建立了硬夹心夹层板结构在面内纵向载荷作用下的平衡微分方程,并对方程进行了简化,通过理论计算得到了四边简支条件下硬夹心矩形夹层板整体失稳临界载荷的解析解,并分别计算了夹心层材料的弹性模量 、厚度 、泊松比 对硬夹心夹层板临界载荷的影响,结果证明,对于硬夹心夹层结构,夹心层面内刚度对硬夹心夹层板整体失稳临界载荷的影响较大,考虑其面内刚度是必要的。  相似文献   

20.
Three-dimensional elasticity solutions for static bending of thick functionally graded plates are presented using a hybrid semi-analytical approach-the state-space based differential quadrature method (SSDQM). The plate is generally supported at four edges for which the two-way differential quadrature method is used to solve the in-plane variations of the stress and displacement fields numerically. An approximate laminate model (ALM) is exploited to reduce the inhomogeneous plate into a multi-layered laminate, thus applying the state space method to solve analytically in the thickness direction. Both the convergence properties of SSDQM and ALM are examined. The SSDQM is validated by comparing the numerical results with the exact solutions reported in the literature. As an example, the Mori-Tanaka model is used to predict the effective bulk and shear moduli. Effects of gradient index and aspect ratios on the bending behavior of functionally graded thick plates are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号