首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is the purpose of this work to derive the balance laws (in the Günther–Knowles–Sternberg sense) pertaining to dipolar gradient elasticity. The theory of dipolar gradient (or grade 2) elasticity derives from considerations of microstructure in elastic continua [Mindlin, R.D., 1964. Microstructure in linear elasticity. Arch. Rational Mech. Anal. 16, 51–78] and is appropriate to model materials with periodic structure. According to this theory, the strain–energy density assumes the form of a positive-definite function of the strain (as in classical elasticity) and the gradient of both strain and rotation (additional terms). The balance laws are derived here through a more straightforward procedure than the one usually employed in classical elasticity (i.e. Noether’s theorem). Indeed, the pertinent balance laws are obtained through the action of the standard operators of vector calculus (grad, curl and div) on appropriate forms of the Hamiltonian of the system under consideration. These laws are directly related to the energy release rates in the processes of crack translation, rotation and self-similar expansion. Under certain conditions, they are identified with conservation laws and path-independent integrals are obtained.  相似文献   

2.
The present work deals with the uniqueness theorem for plane crack problems in solids characterized by dipolar gradient elasticity. The theory of gradient elasticity derives from considerations of microstructure in elastic continua [Mindlin, R.D., 1964. Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78] and is appropriate to model materials with periodic structure. According to this theory, the strain-energy density assumes the form of a positive-definite function of the strain (as in classical elasticity) and the second gradient of the displacement (additional term). Specific cases of the general theory employed here are the well-known theory of couple-stress elasticity and the recently popularized theory of strain-gradient elasticity. These cases are also treated in the present study. We consider an anisotropic material response of the cracked plane body, within the linear version of gradient elasticity, and conditions of plane-strain or anti-plane strain. It is emphasized that, for crack problems in general, a uniqueness theorem more extended than the standard Kirchhoff theorem is needed because of the singular behavior of the solutions at the crack tips. Such a theorem will necessarily impose certain restrictions on the behavior of the fields in the vicinity of crack tips. In standard elasticity, a theorem was indeed established by Knowles and Pucik [Knowles, J.K., Pucik, T.A., 1973. Uniqueness for plane crack problems in linear elastostatics. J. Elast. 3, 155–160], who showed that the necessary conditions for solution uniqueness are a bounded displacement field and a bounded body-force field. In our study, we show that the additional (to the two previous conditions) requirement of a bounded displacement-gradient field in the vicinity of the crack tips guarantees uniqueness within the general form of the theory of dipolar gradient elasticity. In the specific cases of couple-stress elasticity and pure strain-gradient elasticity, the additional requirement is less stringent. This only involves a bounded rotation field for the first case and a bounded strain field for the second case.  相似文献   

3.
The present study aims at determining the elastic stress and displacement fields around the tips of a finite-length crack in a microstructured solid under remotely applied plane-strain loading (mode I and II cases). The material microstructure is modeled through the Toupin-Mindlin generalized continuum theory of dipolar gradient elasticity. According to this theory, the strain-energy density assumes the form of a positive-definite function of the strain tensor (as in classical elasticity) and the gradient of the strain tensor (additional term). A simple but yet rigorous version of the theory is employed here by considering an isotropic linear expression of the elastic strain-energy density that involves only three material constants (the two Lamé constants and the so-called gradient coefficient). First, a near-tip asymptotic solution is obtained by the Knein-Williams technique. Then, we attack the complete boundary value problem in an effort to obtain a full-field solution. Hypersingular integral equations with a cubic singularity are formulated with the aid of the Fourier transform. These equations are solved by analytical considerations on Hadamard finite-part integrals and a numerical treatment. The results show significant departure from the predictions of standard fracture mechanics. In view of these results, it seems that the classical theory of elasticity is inadequate to analyze crack problems in microstructured materials. Indeed, the present results indicate that the stress distribution ahead of the crack tip exhibits a local maximum that is bounded. Therefore, this maximum value may serve as a measure of the critical stress level at which further advancement of the crack may occur. Also, in the vicinity of the crack tip, the crack-face displacement closes more smoothly as compared to the standard result and the strain field is bounded. Finally, the J-integral (energy release rate) in gradient elasticity was evaluated. A decrease of its value is noticed in comparison with the classical theory. This shows that the gradient theory predicts a strengthening effect since a reduction of crack driving force takes place as the material microstructure becomes more pronounced.  相似文献   

4.
Mindlin, in his celebrated papers of Arch. Rat. Mech. Anal. 16, 51–78, 1964 and Int. J. Solids Struct. 1, 417–438, 1965, proposed two enhanced strain gradient elastic theories to describe linear elastic behavior of isotropic materials with micro-structural effects. Since then, many works dealing with strain gradient elastic theories, derived either from lattice models or homogenization approaches, have appeared in the literature. Although elegant, none of them reproduces entirely the equation of motion as well as the classical and non-classical boundary conditions appearing in Mindlin theory, in terms of the considered lattice or continuum unit cell. Furthermore, no lattice or continuum models that confirm the second gradient elastic theory of Mindlin have been reported in the literature. The present work demonstrates two simple one dimensional models that conclude to first and second strain gradient elastic theories being identical to the corresponding ones proposed by Mindlin. The first is based on the standard continualization of the equation of motion taken for a sequence of mass-spring lattices, while the second one exploits average processes valid in continuum mechanics. Furthermore, Mindlin developed his theory by adding new terms in the expressions of potential and kinetic energy and introducing intrinsic micro-structural parameter without however providing explicit expressions that correlate micro-structure with macro-structure. This is accomplished in the present work where in both models the derived internal length scale parameters are correlated to the size of the considered unit cell.  相似文献   

5.
In this paper, we discuss various formats of gradient elasticity and their performance in static and dynamic applications. Gradient elasticity theories provide extensions of the classical equations of elasticity with additional higher-order spatial derivatives of strains, stresses and/or accelerations. We focus on the versatile class of gradient elasticity theories whereby the higher-order terms are the Laplacian of the corresponding lower-order terms. One of the challenges of formulating gradient elasticity theories is to keep the number of additional constitutive parameters to a minimum. We start with discussing the general Mindlin theory, that in its most general form has 903 constitutive elastic parameters but which were reduced by Mindlin to three independent material length scales. Further simplifications are often possible. In particular, the Aifantis theory has only one additional parameter in statics and opens up a whole new field of analytical and numerical solution procedures. We also address how this can be extended to dynamics. An overview of length scale identification and quantification procedures is given. Finite element implementations of the most commonly used versions of gradient elasticity are discussed together with the variationally consistent boundary conditions. Details are provided for particular formats of gradient elasticity that can be implemented with simple, linear finite element shape functions. New numerical results show the removal of singularities in statics and dynamics, as well as the size-dependent mechanical response predicted by gradient elasticity.  相似文献   

6.
The primary objective of this paper is to formulate the governing equations of shear deformable beams and plates that account for moderate rotations and microstructural material length scales. This is done using two different approaches: (1) a modified von Kármán non-linear theory with modified couple stress model and (2) a gradient elasticity theory of fully constrained finitely deforming hyperelastic cosserat continuum where the directors are constrained to rotate with the body rotation. Such theories would be useful in determining the response of elastic continua, for example, consisting of embedded stiff short fibers or inclusions and that accounts for certain longer range interactions. Unlike a conventional approach based on postulating additional balance laws or ad hoc addition of terms to the strain energy functional, the approaches presented here extend existing ideas to thermodynamically consistent models. Two major ideas introduced are: (1) inclusion of the same order terms in the strain–displacement relations as those in the conventional von Kármán non-linear strains and (2) the use of the polar decomposition theorem as a constraint and a representation for finite rotations in terms of displacement gradients for large deformation beam and plate theories. Classical couple stress theory is recovered for small strains from the ideas expressed in (1) and (2). As a part of this development, an overview of Eringen׳s non-local, Mindlin׳s modified couple stress theory, and the gradient elasticity theory of Srinivasa–Reddy is presented.  相似文献   

7.
The J-integral based criterion is widely used in elastic–plastic fracture mechanics. However, it is not rigorously applicable when plastic unloading appears during crack propagation. One difficulty is that the energy density with plastic unloading in the J-integral cannot be defined unambiguously. In this paper, we alternatively start from the analysis on the power balance, and propose a surface-forming energy release rate (ERR), which represents the energy available for separating the crack surfaces during the crack propagation and excludes the loading-mode-dependent plastic dissipation. Therefore the surface-forming ERR based fracture criterion has wider applicability, including elastic–plastic crack propagation problems. Several formulae are derived for calculating the surface-forming ERR. From the most concise formula, it is interesting to note that the surface-forming ERR can be computed using only the stress and deformation of the current moment, and the definition of the energy density or work density is avoided. When an infinitesimal contour is chosen, the expression can be further simplified. For any fracture behaviors, the surface-forming ERR is proven to be path-independent, and the path-independence of its constituent term, so-called Js-integral, is also investigated. The physical meanings and applicability of the proposed surface-forming ERR, traditional ERR, Js-integral and J-integral are compared and discussed. Besides, we give an interpretation of Rice paradox by comparing the cohesive fracture model and the surface-forming ERR based fracture criterion.  相似文献   

8.
This work studies the response of bodies governed by dipolar gradient elasticity to concentrated loads. Two-dimensional configurations in the form of either a half-space (Flamant–Boussinesq type problem) or a full-space (Kelvin type problem) are treated and the concentrated loads are taken as line forces. Our main concern is to determine possible deviations from the predictions of plane-strain/plane-stress classical linear elastostatics when a more refined theory is employed to attack the problems. Of special importance is the behavior of the new solutions near to the point of application of the loads where pathological singularities and discontinuities exist in the classical solutions. The use of the theory of gradient elasticity is intended here to model material microstructure and incorporate size effects into stress analysis in a manner that the classical theory cannot afford. A simple but yet rigorous version of the generalized elasticity theories of Toupin (Arch. Ration. Mech. Anal. 11:385–414, 1962) and Mindlin (Arch. Ration. Mech. Anal. 16:51–78, 1964) is employed that involves an isotropic linear response and only one material constant (the so-called gradient coefficient) additional to the standard Lamé constants (Georgiadis et al., J. Elast. 74:17–45, 2004). This theory, which can be viewed as a first-step extension of the classical elasticity theory, assumes a strain-energy density function, which besides its dependence upon the standard strain terms, depends also on strain gradients. The solution method is based on integral transforms and is exact. The present results show departure from the ones of the classical elasticity solutions (Flamant–Boussinesq and Kelvin plane-strain solutions). Indeed, continuous and bounded displacements are predicted at the points of application of the loads. Such a behavior of the displacement fields is, of course, more natural than the singular behavior present in the classical solutions.   相似文献   

9.
Using Mindlin’s general microstructural elasticity theory we derive models pertaining to a gradient elasticity based on both Laplacians of stress and strain. We prove that such Laplacian-based gradient elasticity models can also be derived on the basis of a thermodynamically consistent gradient elasticity. The proof relies upon a non-conventional thermodynamic framework. It is shown that a general analogy between linear viscoelastic solids based on spring and dashpot elements and specific gradient elasticity models can be established. The governing differential equations of motion of resulting gradient elasticity models are then formulated. By employing energy related arguments, conditions on the material parameters are derived and the appropriate concomitant boundary conditions are specified for both approaches. Finally, the considered models are compared to each other with reference to one-dimensional dispersion relations.  相似文献   

10.
Gradient elasticity for a second gradient model is addressed within a suitable thermodynamic framework apt to account for nonlocality. The pertinent thermodynamic restrictions upon the gradient constitutive equations are derived, which are shown to include, besides the field (differential) stress–strain laws, a set of nonstandard boundary conditions. Consistently with the latter thermodynamic requirements, a surface layer with membrane stresses is envisioned in the strained body, which together with the above nonstandard boundary conditions make the body constitutively insulated (i.e. no long distance energy flows out of the boundary surface due to nonlocality). The total strain energy is shown to include a bulk and surface strain energy. A minimum total potential energy principle is provided for the related structural boundary-value problem. The Toupin–Mindlin polar-type strain gradient material model is also addressed and compared with the above one, their substantial differences are pointed out, particularly for what regards the constitutive equations and the boundary conditions accompanying the solving displacement equilibrium equations. A gradient one-dimensional bar sample in tension is considered for a few applications of the proposed theory.  相似文献   

11.
A constitutive relation for a viscous material subject to small strains but finite rotations is postulated and associated variational theorems are formulated. These are similar to the principle of minimum of potential energy and the Hellinger-Reissner theorem of an elastic solid. The derivation of strain-displacement relations for thin shells subject to small strains but moderately large rotations are given. On this basis a mixed variational principle for thin viscous shells is developed. For the problem of creep collapse of long cylindrical shells under external pressure it is demonstrated that the mixed variational principle may be advantageous compared to other variational theorems. A comparison with the creep collapse theory of Hoff et al. is given.  相似文献   

12.
The present study is concerned with a nonlinear fracture analysis of trilayered beam built up by two unidirectional fiber-reinforced polymer composites. It is assumed that two interlaminar cracks exist between the layers. A tensile force applied to the middle layer generates pure mode II crack loading conditions. The J -integral approach is used to investigate the nonlinear fracture behavior of the beam. The elastic-linearly hardening model is applied to describe the mechanical behavior of the two composites. Sixth expressions for J -integral are derived using a beam theory model. These expressions correspond to the characteristic magnitudes of the external force. The validity of the formulae obtained is proved by comparison with the J -integral solution in the case of linear-elastic behavior of the composite materials. A numerical example is presented in order to demonstrate the ability of the expressions obtained for the analysis of nonlinear fracture in polymer composites.  相似文献   

13.
We consider gradient models of elasticity which permit taking into account the characteristic scale parameters of the material. We prove the Papkovich–Neuber theorems, which determine the general form of the gradient solution and the structure of scale effects. We derive the Eshelby integral formula for the gradient moduli of elasticity, which plays the role of the closing equation in the self-consistent three-phase method. In the gradient theory of deformations, we consider the fundamental Eshelby–Christensen problem of determining the effective elastic properties of dispersed composites with spherical inclusions; the exact solution of this problem for classical models was obtained in 1976.  相似文献   

14.
A phenomenological, flow theory version of gradient plasticity for isotropic and anisotropic solids is constructed along the lines of Gudmundson [Gudmundson, P., 2004. A unified treatment of strain-gradient plasticity. J. Mech. Phys. Solids 52, 1379-1406]. Both energetic and dissipative stresses are considered in order to develop a kinematic hardening theory, which in the absence of gradient terms reduces to conventional J2 flow theory with kinematic hardening. The dissipative stress measures, work-conjugate to plastic strain and its gradient, satisfy a yield condition with associated plastic flow. The theory includes interfacial terms: elastic energy is stored and plastic work is dissipated at internal interfaces, and a yield surface is postulated for the work-conjugate stress quantities at the interface. Uniqueness and extremum principles are constructed for the solution of boundary value problems, for both the rate-dependent and the rate-independent cases. In the absence of strain gradient and interface effects, the minimum principles reduce to the classical extremum principles for a kinematically hardening elasto-plastic solid. A rigid-hardening version of the theory is also stated and the resulting theory gives rise to an extension to the classical limit load theorems. This has particular appeal as previous trial fields for limit load analysis can be used to generate immediately size-dependent bounds on limit loads.  相似文献   

15.
The three-dimensional axisymmetric Boussinesq problem of an isotropic half-space subjected to a concentrated normal quasi-static load is studied within the framework of dipolar gradient elasticity involving linear constitutive relations and small strains. Our main concern is to determine possible deviations from the predictions of classical linear elastostatics when a more refined theory is employed to attack the problem. Of special importance is the behavior of the new solution near to the point of application of the load where pathological singularities exist in the classical solution. The use of the theory of gradient elasticity is intended here to model the response of materials with microstructure in a manner that the classical theory cannot afford. A linear version of this theory (as regards both kinematics and constitutive response) results by considering a linear isotropic expression for the strain-energy density that depends on strain gradient terms, in addition to the standard strain terms appearing in classical elasticity and by considering small strains. Through this formulation, a microstructural material constant is introduced, in addition to the standard Lamé constants. The solution method is based on integral transforms and is exact. The present results show significant departure from the predictions of classical elasticity. Indeed, continuous and bounded displacements are predicted at the points of application of the concentrated load. Such a behavior of the displacement field is, of course, more natural than the singular behavior exhibited in the classical solution.  相似文献   

16.
In this work Kirchhoff plate theory is used to calculate the energy release rate function in delaminated isotropic plates. The approximation is based on the consideration of the equilibrium equations and the displacement continuity between the interface plane of a double-plate model. It is shown that the interface shear stresses are governed by a fourth order partial differential equation system. As an example, a simply supported delaminated plate subjected to a point force is analyzed adopting Lévy plate formulation and the mode-II and mode-III energy release rate distributions along the crack front were calculated by the J-integral. To confirm the analytical results the 3D finite element model of the delaminated plate was created, the energy release rates were calculated by the virtual crack-closure technique and the J-integral. The results indicate a good agreement between analysis and numerical computation.  相似文献   

17.
A detailed variational formulation is provided for a simplified strain gradient elasticity theory by using the principle of minimum total potential energy. This leads to the simultaneous determination of the equilibrium equations and the complete boundary conditions of the theory for the first time. To supplement the stress-based formulation, the coordinate-invariant displacement form of the simplified strain gradient elasticity theory is also derived anew. In view of the lack of a consistent and complete formulation, derivation details are included for the tutorial purpose. It is shown that both the stress and displacement forms of the simplified strain gradient elasticity theory obtained reduce to their counterparts in classical elasticity when the strain gradient effect (a measure of the underlying material microstructure) is not considered. As a direct application of the newly obtained displacement form of the theory, the problem of a pressurized thick-walled cylinder is analytically solved. The solution contains a material length scale parameter and can account for microstructural effects, which is qualitatively different from Lamé’s solution in classical elasticity. In the absence of the strain gradient effect, this strain gradient elasticity solution reduces to Lamé’s solution. The numerical results reveal that microstructural effects can be large and Lamé’s solution may not be accurate for materials exhibiting significant microstructure dependence.  相似文献   

18.
For a crack in a magnetoelectroelastic plane under the electrically and magnetically semi-permeable boundary condition, we derive the non-linear analytical solution of the strip electric–magnetic polarization saturation (EMPS) model. Using the extended dislocation theory and integral equation method, we obtain the electric and magnetic yielding zones, as well as the field intensity factor and local J-integral. Adapting an iterative method, numerical examples were performed to analyze the effect of different boundary conditions and the electric–magnetic saturated properties on the electric displacement and magnetic induction in the crack cavity, electric and magnetic yielding zones, stress intensity factor and local J-integral.  相似文献   

19.
The mode I plane strain crack tip field with strain gradient effects is presented in this paper based on a simplified strain gradient theory within the framework proposed by Acharya and Bassani. The theory retains the essential structure of the incremental version of the conventionalJ 2 deformation theory. No higher-order stress is introduced and no extra boundary value conditions beyond the conventional ones are required. The strain gradient effects are considered in the constitutive relation only through the instantaneous tangent modulus. The strain gradient measures are included into the tangent modulus as internal parameters. Therefore the boundary value problem is the same as that in the conventional theory. Two typical crack problems are studied: (a) the crack tip field under the small scale yielding condition induced by a linear elastic mode-IK-field and (b) the complete field for a compact tension specimen. The calculated results clearly show that the stress level near the crack tip with strain gradient effects is considerable higher than that in the classical theory. The singularity of the strain field near the crack tip is nearly equal to the square-root singularity and the singularity of the stress field is slightly greater than it. Consequently, theJ-integral is no longer path independent and increases monotonically as the radius of the calculated circular contour decreases. The project supported by the National Natural Science Foundation of China (19704100 and 10202023) and the Natural Science Foundation of Chinese Academy of Sciences (KJ951-1-20)  相似文献   

20.
The classical laminated plate theory is applied to calculate the stresses and energy release rate function in symmetrically delaminated orthotropic plates. First, the equilibrium of classical plate forces, moments and interfacial shear stresses is formulated. Second, the displacement continuity between the interface plane of a double-plate model was considered. The governing equation system of the double-plate model consists of ten equations. As an example a delaminated, orthotropic, simply-supported plate subjected to a point force is analyzed. The distribution of the plate forces as well as the interlaminar shear stresses over the uncracked part were determined. Moreover, the mode-II and mode-III energy release rate distributions along the crack front were calculated by the J-integral. The 3D finite element model of the delaminated composite plate was also created. The results indicate a reasonably good agreement between analysis and numerical calculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号