首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bulk nanocomposites ZnO–SnO2–TiO2 were synthesized by solid-state reaction method. The X-ray diffraction patterns and Raman spectra of bulk nanocomposite as a function of sintering temperature (700 °C–1300 °C) indicate that the structural phases of SnO2 and TiO2 depend on the sintering temperature while the ZnO retains its hexagonal wurtzite phase at all sintering temperatures and SnO2 started to transform into SnO at 900 °C and completely converted into SnO at 1100 °C, whereas the titanium dioxide (TiO2) exhibits its most stable phase such as rutile at low sintering temperature (≤900°C) and it transforms partially into brookite phase at high sintering temperature (≥ 900 °C). The optical band gap of nanocomposite ZnO–SnO2–TiO2 sintered at 700 °C, 900 °C, 1100 °C and 1300 °C for 16 hours is calculated using the transformed diffuse reflectance ultra violet visible near infra red (UV–VisNIR) spectra and has been found to be 3.28, 3.29, 3.31 and 3.32 eV, respectively.  相似文献   

2.
PVDF + BaZrO3 electroactive nanocomposite thin film has been prepared by solution casting method. The structural analysis was carried out by using x-ray diffraction pattern and atomic force microscopy (AFM). Generally, the performance of dielectric capacitors toward higher energy density and higher operating temperatures has been drawing increased interest. In this regard, the present study was focussed on the fabrication and characterization of PVDF + BaZrO3 electroactive nanocomposites in view of enhancing the energy density at elevated temperature. Cole-Cole plot is an agreement with multiple relaxation process in electroactive nanocomposites. Dielectric energy storage performance is assessed for PVDF nanocomposites with different wt% of BaZrO3 at different frequencies and temperature. It has been observed that with increase of temperature, the permittivity increased while the energy density slightly decreased but significantly higher than pure polymer PVDF. A high energy density of 6.88 J/cm3 was obtained for BaZrO3 electroactive nanocomposites at 50 °C and 5.06 J/cm3 at 70 °C. Overall, the testing results indicate that using nanocomposites of PVDF and BaZrO3 as a dielectric component is promising for implementation to preserve high energy density values up to temperatures of 70 °C.The enhancement of dielectric permittivity and the energy density is attributed due to increase of interracial charge density. The effect of BaZrO3 nanoparticles in energy density of PVDF is first time reported.  相似文献   

3.
Electrical conductivity of TiO2 doped with CaO has been measured at different temperatures for various molar ratios. The conductivity after initially remaining constant till about 140 °C increases with temperature due to the migration of vacancies created by doping. After attaining a maximum value at 240 °C, conductivity decreases due to the collapse of fluorite framework. A second rise in conductivity at high temperature beyond 400 °C indicates the phase transition of TiO2, from anatase to rutile, which is confirmed by the differential scanning calorimetry results. X-ray powder diffraction, impedance measurements, and Fourier transform infrared spectral studies were also carried out for confirming the doping effect and phase transitions in TiO2. Doping of TiO2 with CaO shifts the transition to lower temperatures.  相似文献   

4.
SrBi2Ta2O9 (SBT) ferroelectric thin films with different preferred orientations were deposited by pulsed laser deposition (PLD). Several methods have been developed to control the preferred orientation of SBT thin films. For SBT films deposited directly on Pt/TiO2/SiO2/Si substrates and in situ crystallized at the deposition temperature, the substrate temperature has a significant impact on the orientation and the remnant polarization (Pr) of the films; a higher substrate temperature benefits the formation of (115) texture and larger grain size. The films deposited on Pt/TiO2/SiO2/Si substrates at 830 °C are (115)-oriented and exhibit 2Pr of 6 μC/cm2. (115)- and (200)-predominant films can be formed by using a La0.85Sr0.15CoO3 (LSCO) buffer layer or by annealing amorphous SBT films deposited on Pt/TiO2/SiO2/Si substrates at 450 °C using rapid thermal annealing (RTA). These films exhibit good electric properties; 2Pr of the films are up to 12 μC/cm2 and 17 μC/cm2, respectively. The much larger 2Pr of the films deposited on the LSCO buffer layer and of the films obtained by RTA than 2Pr of the films deposited on Pt/TiO2/SiO2/Si substrates at 830 °C is attributed to a stronger (200) texture. Received: 30 January 2001 / Accepted: 30 May 2001 / Published online: 25 July 2001  相似文献   

5.
We present a morphologic and spectroscopic study of cluster-assembled TiO x films deposited by supersonic cluster beam source on clean silicon substrates. Data show the formation of nanometer—thick and uniform titanium silicides film at room temperature (RT). Formation of such thick TiSi x film goes beyond the classical interfacial limit set by the Ti/Si diffusion barrier. The enhancement of Si diffusion through the TiO x film is explained as a direct consequence of the porous film structure. Upon ultra high vacuum annealing beyond 600 °C, TiSi2 is formed and the oxygen present in the film is completely desorbed. The morphology of the nanostructured silicides is very stable for thermal treatments in the RT—1000 °C range, with a slight cluster size increase, resulting in a film roughness an order of magnitude smaller than other TiO x /Si and Ti/Si films in the same temperature range. The present results might have a broad impact in the development of new and simple TiSi synthesis methods that favour their integration into nanodevices.  相似文献   

6.
Bilayer CeO2/TiO2 films with high-k dielectric property were prepared by rf magnetron sputtering technique at room temperature. Effect of annealing treatment on resistive switching (RS) properties of bilayer CeO2/TiO2 films in O2 ambient at different temperature in the range of 350–550 °C was investigated. Our results revealed that the bilayer films had good interfacial property at 500 °C and this annealing temperature is optimum for different RS characteristics. Results showed that bilayer CeO2/TiO2 film perform better uniformity and reliability in resistive switching at intermediate temperature (i.e. 450 °C and 500 °C) instead of low and high annealing temperature (i.e. 350 °C and 550 °C) at which it exhibits poor crystalline structure with more amorphous background. Less Gibbs free energy of TiO2 as compared to CeO2 results in an easier re-oxidation of the filament through the oxygen exchange with TaN electrode. However, the excellent endurance property (>2500 cycles), data retentions (105 s) and good cycle-to-cycle uniformity is observed only in 500 °C annealed devices. The plots of cumulative probability, essential memory parameter, show a good distribution of Set/Reset voltage.  相似文献   

7.
In this paper, the adsorption of 4‐mercaptobenzoic acid (4‐MBA) on TiO2 nanoparticles was studied mostly by surface‐enhanced Raman spectroscopy (SERS) and UV‐vis spectroscopy, at different pH values as well as under different temperatures and concentrations. The results show that the 4‐MBA molecules are bonded to the TiO2 surface both through the sulfur atoms and COO groups at neutral or alkaline pH, but only through the sulfur atom at acidic pH. Furthermore, the 4‐MBA molecules possess high adsorptive stability on TiO2 at a comparatively high temperature (150 °C). Concentration‐dependent SERS experiments show that the saturation concentration for 4‐MBA adsorbed on TiO2 is about 10−3 M in natural case (pH = 6). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Titanium dioxide (TiO2) films with a thickness of 550 nm were deposited on quartz glass at 300 °C by metalorganic chemical vapor deposition. The effects of post-annealing between 600 °C and 1000 °C were investigated on the structural and optical properties of the films. X-ray diffraction patterns revealed that the anatase phase of as-grown TiO2 films began to be transformed into rutile at the annealing temperature of 900 °C. The TiO2 films were entirely changed to the rutile phase at 1000 °C. From scanning electron spectroscopy and atomic force microscopy images, it was confirmed that the microstructure of as-deposited films changed from narrow columnar grains into wide columnar ones. The surface composition of the TiO2 films, which was analyzed by X-ray photoelectron spectroscopy data, was nearly constant although the films were annealed at different temperatures. When the annealing temperature increased, the transmittance of the films decreased, whereas the refractive index and the extinction coefficient calculated by the envelope method increased at high temperature. The values of optical band gap decreased from 3.5 eV to 3.25 eV at 900 °C. This abrupt decrease was consistent with the anatase-to-rutile phase transition. Received: 4 October 2000 / Accepted: 4 December 2000 / Published online: 23 May 2001  相似文献   

9.
Barium strontium titanate (BST) films on single-crystal sapphire substrates are prepared by chemical solution deposition upon annealing at temperatures T = 700, 850, and 1000°C. The structure of the BST films is investigated using transmission electron microscopy, high-resolution electron microscopy, and x-ray diffraction. It is established that, upon annealing at T = 700 and 850°C, the film crystallizes in the tetragonal phase of the (Ba0.7Sr0.3)TiO3 perovskite without texture and transition layers. The mean grain sizes are 17 and 37 nm, respectively. However, an increase in the annealing temperature to 1000°C brings about a decrease in the mean grain size to 25 nm and the appearance of additional phases due to the interaction at the film-substrate interface.  相似文献   

10.
In this paper, pure and Zn‐doped TiO2 nanoparticles (NPs) with various content of Zn were prepared by a sol–hydrothermal method and were employed as active substrates for surface‐enhanced Raman scattering (SERS). On the 3% Zn‐doped TiO2 substrate, 4‐mercaptobenzoic acid(4‐MBA) molecules exhibit a higher SERS intensity by a factor of 6, as compared with the native enhancement of 4‐MBA adsorbed on undoped TiO2 NPs. Moreover, the higher SERS activity was still observed on the 3% Zn‐doped TiO2 NPs at temperature even up to 125 °C. These results indicate that an appropriate amount of Zn doping can improve the SERS performances of TiO2 SERS‐active substrates. The introduction of Zn dopant can enrich the surface states (defects) of TiO2 and improve the separation efficiency of photo‐generated charge carriers (electrons and holes) in TiO2, according to measurements of X‐ray diffraction, UV‐visible diffuse reflectance spectroscopy, and photoluminescence, which are responsible for the influence of Zn dopant on the improved SERS performances of TiO2 NPs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
〈1 1 1〉-oriented Pb(Zr0.6Ti0.4)O3 thin films were elaborated in the same run by RF multitarget sputtering on Si/SiO2/TiO2/Pt(1 1 1) and LaAlO3/Pt(1 1 1) substrates. PZT thin films were textured, exhibiting 〈1 1 1〉 fibre texture on silicon substrates whereas epitaxial relationships were found when grown on LaAlO3/Pt(1 1 1). On the latter substrate, values of spontaneous polarization and of dielectric permittivity were measured close to that calculated previously along the 〈1 1 1〉 direction of PZT rhombohedral single crystal. On the contrary, spontaneous polarization and dielectric permittivity measured on PZT thin films deposited on platinized silicon were found deviating from calculated values. These different electrical results are attributed to different ferroelectric domain configurations.  相似文献   

12.
The controllable synthesis and characterization of novel thermally stable silver-based particles are described. The experimental approach involves the design of thermally stable nanostructures by the deposition of an interfacial thick, active titania layer between the primary substrate (SiO2 particles) and the metal nanoparticles (Ag NPs), as well as the doping of Ag nanoparticles with an organic molecule (Congo Red, CR). The nanostructured particles were composed of a 330-nm silica core capped by a granular titania layer (10 to 13 nm in thickness), along with monodisperse 5 to 30 nm CR-Ag NPs deposited on top. The titania-coated support (SiO2/TiO2 particles) was shown to be chemically and thermally stable and promoted the nucleation and anchoring of CR-Ag NPs, which prevented the sintering of CR-Ag NPs when the structure was exposed to high temperatures. The thermal stability of the silver composites was examined by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). Larger than 10 nm CR-Ag NPs were thermally stable up to 300 °C. Such temperature was high enough to destabilize the CR-Ag NPs due to the melting point of the CR. On the other hand, smaller than 10 nm Ag NPs were stable at temperatures up to 500 °C because of the strong metal-metal oxide binding energy. Energy dispersion X-ray spectroscopy (EDS) was carried out to qualitatively analyze the chemical stability of the structure at different temperatures which confirmed the stability of the structure and the existence of silver NPs at temperatures up to 500 °C.  相似文献   

13.
TiO2 films were prepared by pulsed laser deposition using a metallic Ti target in an O2 gas ambient. The microstructure along with optical and photocatalytic properties of the deposited films were systematically studied by changing the deposition parameters and substrates. It was found that TiO2 films having nearly pure anatase phase grew effectively in O2 atmosphere. When the films were fabricated at a substrate temperature of 400°C, their phase structures were greatly affected by the O2 gas pressure, and nearly pure anatase phase with typical (101) and (004) peaks can be obtained under an O2 pressure of 15 Pa. For the deposition at 700°C, the crystal structure of the TiO2 films exhibited a strong anatase (004) peak and was inert to the oxygen pressures. Two modes, namely a substrate-temperature-controlled mode and an oxygen-pressure-controlled mode, were considered for the growth of the anatase TiO2 films under different substrate temperatures. In addition, the optical and photocatalytic properties were found to be sensitive to both the microstructure and grain size of the TiO2 films.  相似文献   

14.
CdS/CdSe co-sensitizers on TiO2 films were annealed using a two-step procedure; high temperature (300 °C) annealing of TiO2/CdS quantum dots (QDs), followed by low temperature (150 °C) annealing after the deposition of CdSe QDs on the TiO2/CdS. For comparison, two types of films were prepared; CdS/CdSe-assembled TiO2 films conventionally annealed at a single temperature (150 or 300 °C) and non-annealed films. The 300 °C-annealed TiO2/CdS/CdSe showed severe coalescence of CdSe QDs, leading to the blocked pores and hindered ion transport. The QD-sensitized solar cell (QD-SSC) with the 150 °C-annealed TiO2/CdS/CdSe exhibited better overall energy conversion efficiency than that with the non-annealed TiO2/CdS/CdSe because the CdSe QDs annealed at a suitable temperature (150 °C) provided better light absorption over long wavelengths without the hindered ion transport. The QD-SSC using the two-step annealed TiO2/CdS/CdSe increased the cell efficiency further, compared to the QD-SSC with the 150 °C-annealed TiO2/CdS/CdSe. This is because the 300 °C-annealed, highly crystalline CdS in the two-step annealed TiO2/CdS/CdSe improved electron transport through CdS, leading to a significantly hindered recombination rate.  相似文献   

15.
In this work, Ba0.8Sr0.2TiO3 (BST) films were grown by pulse laser ablation on bare glass and platinized substrates. The crystalline phase was obtained with the help of laser-assisted annealing (LAA) at room temperature, in air environment. By adjusting LAA conditions, like frequency of the laser and number of shots, we were able to grow crack-free BST thin films with pure perovskite phase on bare glass and platinized substrates. The crystalline layer was found to be the same irrespective of the substrate used, c.a. 250 nm thick. The electric characteristics of the amorphous and LAA crystalline BST films deposited on platinized substrate were further studied and analyzed. While in amorphous films it was found that the oxygen defects are responsible for conduction, in LAA films the amorphous/crystalline interface layer plays an important role in current leakage.  相似文献   

16.
Using a low-cost hydrothermal method, we demonstrated the fabrication of phase pure rutile phase high-density vertically aligned TiO2 nanorods-based catalyst-free hydrogen (H2) gas sensor. The synthesized TiO2 nanorods on FTO are decorated with the aluminum interdigitated electrode pattern for electrical measurements. TiO2 nanorods-based hydrogen sensor showed the optimum response of ∼53.18% at 150 ppm H2 concentration relative to air at 100 °C. The measured response and recovery time of TiO2 nanorods are 85 and 620 s, respectively. The TiO2 nanorods-based H2 gas sensor showed a relatively better response, good reproducibility, and stability at moderate temperatures, i.e., 50 and 100 °C. The electrochemical impedance measurements showed a small variation in the surface characteristics of TiO2 nanorods before and after exposing H2 gas. The carrier lifetime at 50 °C and 100 °C at 150 ppm are 5 μs and 3 μs, respectively. Interestingly, H2 selectivity is also observed against H2S, CO, and NH3 gases, suggesting that high-density vertically aligned TiO2 nanorods can be a good candidate for efficient hydrogen sensing at relatively low temperatures.  相似文献   

17.
In the present work anatase–rutile transformation temperature and its effect on physical/chemical properties as well as photocatalytic activity of TiO2 particles were investigated. The characterisation of the synthesised and annealed TiO2 particles were determined by X-Ray Powder Diffraction (XRD), scanning electron microscope (SEM), dynamic light scattering (DLS) and Brunauer–Emmett–Teller surface area analysis (BET). The refraction in the ultraviolet–visible (UV–vis) range was assessed using a dual-beam spectrophotometer. The photocatalytic performance of the particles was tested on methylene blue solution. The XRD data indicated that the percentage of rutile increased with the annealing temperature and almost 100% of anatase transformed to rutile at 1000 °C. In addition, the phase transformation was a linear function of annealing temperature so phase composition of TiO2 can be controlled by changing the annealing temperature. The SEM and BET results presented the increase of agglomerate size and the decrease of specific surface area with the increasing annealing temperature. This proved that anatase has smaller particle size and higher surface area than rutile. The photocatalytic activity of the annealed TiO2 powders reduced with the increase of annealing temperature. The samples annealed at 900 °C and 925 °C with anatase: rutile ratio of 92:8 and 77:23, respectively, showed the best activity. These results suggested that the photocatalytic activity of TiO2 particles is a function of phase composition. Thus it can be enhanced by changing its phase composition which can be controlled by annealing temperature.  相似文献   

18.
GaAs(100) was exposed to pulses of trimethylaluminum (TMA, Al(CH3)3) and titanium tetrachloride (TiCl4) to mimic the first half-cycle of atomic layer deposition (ALD). Both precursors removed the 9.0 ± 1.6 Å-thick mixed oxide consisting primarily of As2O3 with a small Ga2O component that was left on the surface after aqueous HF treatment and vacuum annealing. In its place, TMA deposited an Al2O3 layer, but TiCl4 exposure left Cl atoms adsorbed to an elemental As layer. This suggests that oxygen was removed by the formation of a volatile oxychloride species. A small TiO2 coverage of approximately 0.04 monolayer remained on the surface for deposition temperatures of 89 °C to 135 °C, but no TiO2 was present from 170 °C to 230 °C. The adsorbed Cl layer chemically passivated the surface at these temperatures and blocked TiO2 deposition even after 50 full ALD cycles of TiCl4 and water vapor. The Cl and As layers desorbed simultaneously at higher temperature producing peaks in the temperature programmed desorption spectrum in the range 237–297 °C. This allowed TiO2 deposition at 300 °C in single TiCl4 pulse experiments. On the native oxide-covered surface where there was a higher proportional Ga oxide composition, TiCl4 exposure deposited TiO2.  相似文献   

19.
D. Westphal  S. Jakobs  U. Guth 《Ionics》2001,7(3):182-186
In potentiometric zirconia based sensors gold electrodes show a high sensitivity for hydrocarbons (HC's) when the measurements are carried out in non equilibrated oxygen containing gas mixtures at temperatures <700 °C. This behaviour explained by mixed potential theory is not stable and depends strongly on preparation and particularly on measuring conditions. To modify the electrode behaviour composites consisting of gold and gallium oxide were investigated. Gold pastes with different amount of Ga2O3 were prepared and screen printed on YSZ pellets. After sintering at defined temperatures between 900 and 950 °C the cells were tested regarding the electrode behaviour in a C3H6, O2 gas mixture using a platinum air reference electrode. These composite electrodes show as compared with pure gold an enhanced sensitivity at low propylene concentrations and a time-independent characteristic at high concentrations of C3H6. The optimal composition is found to be at 20 mass-% Ga2O3. This electrode can be treated in reducing gases at temperatures 850 °C without changing its characteristics. Paper presented at the 7th Euroconference on Ionics, Calcatoggio, Corsica, France, Oct. 1–7, 2000.  相似文献   

20.
Ferroelectric (Pb0.76Ca0.24)TiO3 thin films were prepared on platinized Si substrates by chemical solution deposition (CSD). Two different synthetic strategies were adopted to optimize the functionality of the resulting perovskite films: (1) tailoring the schedule of the solution synthesis and (2) chemical selectivity of the calcium precursor. The choice of an appropriate synthetic procedure led to homogeneous sols constituted by a single distribution of particles, as revealed by dynamic light scattering (DLS). Stronger polymeric structures in the sol network are believed to prevent atomic diffusion of metal cations during crystallization at higher temperatures, and perovskite films with a uniform compositional profile and without any detrimental interface with the electrode were measured by Rutherford backscattering spectroscopy (RBS). On the other hand, phase formation and microstructure of crystalline films were strongly affected by the calcium compound used, i.e. calcium acetate or calcium acetylacetonate. The single decomposition mechanism of the last one, with absence of intermediate carbonates, resulted in the prompt crystallization of the perovskite phase (375°C) and an enhanced grain-growth mechanism that led to dense films formed by larger grains. Consequently, the optimized ferroelectric (Pb0.76Ca0.24)TiO3 films showed superior electrical properties: maximum values of dielectric constant nearly doubled and a relative increase in the remanent polarization being ∼40% (P r =23 μC/cm2). The potential application of these films in functional microelectronic devices is also demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号