首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
This paper investigates the synthetic mechanism of trifluoroiodomethane (CF3I) in the reaction of trifluoromethane and iodine via vapor-phase catalytic reaction. It is suggested that CF2 carbene is the key intermediate and is formed in the pyrolysis process of CHF3 at high temperature. However, in pyrolysis of CHF3 under activated charcoal (AC) existing conditions, no C2F4 was detected. H2 and 2-methyl-2-butene could not trap the CF2 carbene. When treating the remained compounds on the used AC with H2, CH4 is formed on the process. It is proposed that CF2 carbene combines with AC strongly and transfers into CF3 radical on heat. In addition, it is found that the AC is not only the catalyst supporter to form CF3I, but also a co-catalyst to promote the formation of CF2 carbene and CF3 radical.  相似文献   

2.
The rate constants of the hydrogen abstraction reactions of CF3CHFCF3 + H (R1) and CF3CF2CHF2 + H (R2) have been calculated by means of the dual-level direct dynamics method. Optimized geometries and frequencies of stationary points and extra points along the minimum-energy path (MEP) are obtained at the MPW1K/6-311+G(d,p) level, and the classical energetic information is further corrected with the interpolated single-point energy (ISPE) approach by the G3(MP2) level of theory. Using the canonical variational transition state theory (CVT) with small-curvature tunneling corrections (SCT), the rate constants are evaluated over a wide temperature range of 200-2000 K. The calculated CVT/SCT rate constants are in good agreement with available experimental values. It is found that the variational effect is very small and almost negligible over the whole temperature region. However, the small-curvature tunneling correction plays an important role in the lower temperature range. Furthermore, the heats of formation of species CF3CF2CHF2 (SC1 or SC2) and CF3CF2CF2 are studied using isodesmic reactions to further elucidate the thermodynamic properties.  相似文献   

3.
Reaction rate coefficients have been measured at 295 K for both CF3 and CF2 with atomic and molecular fluorine. The reaction between CF3 and F was studied over a gas number density range of (2.4–23)×1016 cm–3 with helium as the bath gas. The measured rate coefficient increased from (1.1–1.7)×10–11 cm3 s–1 as the gas number density increased over this range. In contrast to this relatively small change in rate coefficient with gas number density, the rate coefficient for CF2+F increased from (0.4–2.3)×10–12 cm3 s–1 as the helium gas number density increased from (3.4–28.4)×1016 cm–3. Even for the highest bath gas number density employed, the rate coefficient was still more than an order of magnitude lower than earlier measurements of this coefficient performed at comparable gas number densities.Both these association reactions are examined from the standpoint of the Gorin model for association of radicals and use is made of unimolecular dissociation theory to examine the expected dependence on gas number density. The calculations reveal that CF3+F can be explained satisfactorily in these terms but CF2+F is not well described by the simple Gorin model for association.CF3 was found to react with molecular fluorine with a rate coefficient of (7±2)×10–14 cm3 s–1 whereas only an upper limit of 2×10–15 cm3 s–1 could be placed on the rate coefficient for the reaction between CF2 and F2. The values obtained for this set of reactions mean that the reaction between CF3 and F will play an important role in plasmas containing CF4. The high rate coefficient will mean that, under certain conditions, this particular reaction will control the amount of CF4 consumed. On the other hand, the much lower rate coefficient for reactions between CF2 and F means that CF2 will attain much higher concentrations than CF3 in plasmas where these combination reactions are dominant.  相似文献   

4.
The mechanisms for the reaction of CF3O2 with atomic hydrogen were studied with ab initio and DFT methods. The results reveal that the reaction could take place on the singlet and triplet potential energy surfaces (PES). For the singlet PES, addition/elimination and substitution mechanisms are determined, and the former one is dominant. The most favorable channel involves the association of CF3O2 with H atom to form CF3O2H (IM1) via a barrierless process, and then the O–O bond dissociates to give out CF3O + OH. The secondary product might be CF3OH + O, formed from the O–O bond cleavage in the initial adduct CF3O(H)O (IM2). Other products such as CF3 + O2H, HF + CF2O2 and O2 + CHF3 are of no importances because of higher barriers. On the triplet PES, only substitution mechanism is located. With higher barriers involving, the channels on the triplet PES could be negligible compared with the channels on the singlet PES.  相似文献   

5.
In the present work, the activated carbon (AC) support was treated with HCl, HNO3 and HF solution. The order of catalyst dispersion was as follows: Rb-K/AC-HNO3 > Rb-K/AC-HF > Rb-K/AC-HCl > Rb-K/AC. The same sequence was also observed for the amount of the acid surface oxygen groups on AC, but not for the basicity of the catalyst. The key role of acid treatment on AC surface chemistry and the basic sites, which are closely related to catalyst dispersion and basicity, is examined to rationalize these findings. On the other hand, a consideration of the reaction mechanism suggests that the reaction proceeds via CF2 carbenes formed on the catalyst surface as intermediates, followed by carbine disproportionation to CF3 radicals and CF3CF2 radicals, followed by reaction with I2 to produce CF3CF2I, and it was also found that the Rb-K/AC-HCl catalyst with a high dispersion and moderate basicity was helpful for the enhancement of catalytic activity for C2F5I synthesis.  相似文献   

6.
We have analyzed decay kinetics of CF2 radicals in the afterglow of low-pressure, high-density C4F8 plasmas. The decay curve of CF2 density has been approximated by the combination of first- and second-order kinetics. The surface loss probability evaluated from the frequency of the first-order decay process has been on the order of 10–4. This small surface loss probability has enabled us to observe the second-order decay process. The mechanism of the second-order decay is self-association reaction between CF2 radicals (CF2+CF2C2F4). The rate coefficient for this reaction has been evaluated as (2.6–5.3)×10–14 cm3/s under gas pressures of 2 to 100 mTorr. The rate coefficient was found to be almost independent of the gas pressure and has been in close agreement with known values, which are determined in high gas pressures above 1 Torr.  相似文献   

7.
A parametric study of the etching of Si and SiO2 by reactive ion etching (RIE) was carried out to gain a better understanding of the etching mechanisms. The following fluorocarbons (FCs) were used in order to study the effect of the F-to-Cl atom ratio in the parent molecule to the plasma and the etching properties: CF4, CF3Cl, CF2Cl2, and CFCl3 (FC-14, FC-13, FC-12, and FC-11 respectively). The Si etch rate uniformity across the wafer as a function of the temperature of the wafer and the Si load, the optical emission as a function of the temperature of the load, the etch rate of SiO2 as a function of the sheath voltage, and the mass spectra for each of the FCs were measured. The temperature of the wafer and that of the surrounding Si load strongly influence the etch rate of Si, the uniformity of etching, and the optical emission of F, Cl, and CF2. The activation energy for the etching reaction of Si during CF4 RIE was measured. The etch rate of Si depends more strongly on the gas composition than on the sheath voltage; it seems to be dominated by ion-assisted chemical etching. The etching of photoresist shifted from chemical etching to ion-assisted chemical etching as a function of the F-to-Cl ratio and the sheath voltage. The etch rate of SiO2 depended more strongly on the sheath voltage than on the F-to-Cl ratio.  相似文献   

8.
The potential energy surface for the CF3O2 + OH reaction has been theoretically investigated using the DFT (B3LYP/6-311G(d,p)) level of theory. Both singlet and triplet potential energy surfaces are investigated. The reaction mechanism on the triplet surface is simple. However, the reaction mechanism on the singlet surface is more complicated. It is revealed that the formation of CF3O + HO2 is the dominant channel on the triplet surface. The potential energy surface (PES) for this reaction has been given according to the relative energies calculated at the DFT/B3LYP/6-311G(d,p) level. Because this reaction involves both triplet and singlet states, triplet–singlet intersystem crossing (ISC) crossing also have been investigated in this paper.  相似文献   

9.
The potential energy surface for the reaction of CF3S with CO is calculated at the G4//B3LYP/6-311++G(d,p) level of theory. The results show that F-abstraction and addition-elimination mechanisms are involved, and the latter one is dominant thermodynamically and kinetically. The dominant channel is the reactant addition to form CF3SCO, and then decomposes to CF3 + OCS. While the direct F-abstraction channel and CF3SCO isomerization channel are not significant for the title reaction due to higher barriers involved. The comparisons among four reactions of CX3Y + CO (X = H, F; and Y = O, S) are made to imply the similar and different properties and reactivities of the same family elements and the F- and S-substituted derivatives.  相似文献   

10.
A self-consistent, one-dimensional simulator for the physics and chemistry of radio frequency (rf) plasmas was developed and applied for CH4 and CF4. The simulator consists of a fluid model for the discharge physics, a commercial Boltzmann equation solver for calculations of electron energy distribution fuction (EEDF), a generalized plasma chemistry code, and an interface module among the three models. The CH4 and CF4 discharges are compared and contrasted: CH4 plasmas are electropositive, with negative ion densities one order of magnitude less than those of electrons, whereas CF4 plasmas are electronegative, with ten times more negative ions than electrons. The high-energy tail of tire EEDF in CH4, lies below both the Druyvensteyn and Maxwell distributions, whereas tire EEDF high-energy tail in CF4 lies between the two. For CH4, the chemistry model was applied for four species, namely, CH4 CH3 CH2, and H, whereas for CF4, five species were examined namely CF4, CF3, CF2, CF, and F The predicted densities and profiles compare favorably with experimental data. Finally, the chemistry results were fedback into the physics model until convergence was obtained.  相似文献   

11.
The catalytic olefination reaction of 2-nitrobenzaldehydes with CF3CCl3 afforded stereoselectively trifluoromethylated ortho-nitrostyrenes in up to 88% yield. The reaction of these alkenes with pyrrolidine permits preparation of α-CF3-β-(2-nitroaryl) enamines. Subsequent one pot reduction of nitro-group by Fe-AcOH-H2O system initiated intramolecular cyclization to afford 2-CF3-indoles. Target products can be prepared in up to 85% yields. Broad synthetic scope of the reaction was shown as well as some followed up transformations of 2- CF3-indole.  相似文献   

12.
A series of reactions between SF5CF2CF2I and SF5(CF2)4I with F2CCF2 was carried out in an effort to find the most effective methods for chain-extension. Also, for the first time, SF5(CF2)8I and SF5(CF2)10I have been prepared and isolated. The reaction conditions for the addition of H2CCH2 were also investigated. A determination of the crystal structure of the SF5(CF2)4CH2CH2I has been carried out: the crystal system is monoclinic, with space group P2(1)/n and a=23.465(5) Å; b=6.0971(12) Å; c=44.892(9) Å; α=90°; β=99.38(3)°; γ=90°; Z=20.  相似文献   

13.
Classical trajectory simulations are used to study the intramolecular dynamics of isolated CF3H and the CF3H(H2O)3 cluster, by either exciting the CH stretch local mode to then=6 level or by adding an equivalent amount of energy to an OH stretch normal mode. Energy transfer from the CH local mode is statistically the same for CF3H(H2O)3 as for isolated CF3H, and agrees with previous experimental studies. Clusters excited with 6 quanta in the CH local mode are remarkably stable. Though the CF3H-(H2O)3 intermolecular potential is only 1.5 kcal/mol, only 1 of 26 clusters excited with 6 quanta in the CH local mode dissociate within 10 ps. The absorption linewidth for the CH local mode in CF3H(H2O)3 is related to IVR within CF3H and not to the unimolecular lifetime of the cluster. When an OH stretch normal mode of the cluster is excited, energy transfer to CF3H is negligible and nearly one half of the clusters dissociate within 10 ps.  相似文献   

14.
Reactions of α,β-unsaturated CF3-ketones with nitromethane and ethyl nitroacetate have been investigated. We found that α,β-unsaturated trifluoromethylketones react with ethyl nitroacetate in the presence of calcinated potassium fluoride to form two classes of 1,4-conjugated addition products: CF3-γ-nitroketones and 6,6,6-trifluoro-2-nitro-5-oxohexanoates in nearly quantitative yields. The products obtained are precursors for CF3-pyrrolidine synthesis.  相似文献   

15.
A solid ternary mixture consisting of NaF, silicon and one of the metal oxides such as Al2O3, MgO, CaO, SrO, BaO was prepared and used as a defluorinated reagent for CF4 decomposition. The results show that the initial conversion of CF4 reached 100% over NaF-Si-MgO and NaF-Si-CaO at 850°C, and the reagent with NaF/Si/MgO molar ratio of 33/34/33 exhibited a high reactivity with a full conversion of CF4 lasting for 57 min. The plausible paths of CF4 decomposition over NaF-Si-Al2O3, NaF-Si-MgO, NaF-Si-CaO, NaF-Si-SrO and NaF-Si-BaO are proposed.  相似文献   

16.
The spin-spin coupling constant 3 J H,F of the H(CF2)2 group varies within 1.6—3.5 Hz for 5-RF- and 3.8—4.5 Hz for 3-RF-isoxazoles and pyrazoles in CDCl3 and can serve as a reliable criterion for recognition of regioisomeric and tautomeric structures of H(CF2)2-containing heterocyclic compounds.  相似文献   

17.
The electrical conductivities of aqueous solutions of NaCF3SO3, KCF3SO3, and Ni(CF3SO3)2 have been measured at 25‡C in the concentration range 1 to 25X 10-3 mol-dm-3 The data approach the Onsager limiting law at low concentrations, leading to a limiting molar ion conductivity for the CF3SO 3 ion of 44.5±0.2 S-cm2-mol-1, based on standard values for the cations. Using a simple size parameter for unsymmetrical polyatomic ions, based on the ion geometry, it is shown that the well known empirical relation between the molar conductivities of symmetrical ions and their radii can be extended to include certain polyatomic anions including CF3SO 3 . The results suggest that the CF3SO 3 ion is either a weak structure breaker in aqueous solution or neutral in this respect.  相似文献   

18.
A study of the atmospheric photochemical reaction of CF3 radical with CO and O2 was performed by using a homemade ultraviolet photoelectron spectrometer-photoionization mass spectrometer (PES-PIMS). The electronic structures and mechanism of ionization and dissociation of CF3OC(O)OOC(O)-OCF3 were investigated. It was indicated that the two bands on the photoelectron spectrum of CF3OC(O)OOC(O)OCF3 are the result of ionization of an electron from a lone pair of oxygen and a fluorine lone pair of CF3 group. The outermost electrons reside in the oxygen lone pair. The experimental and theoretical first vertical ionization energy is 13.21 and 13.178 eV, respectively, with the PES and OVGF method. They are in good agreement. The photo ionization and dissociation processes were discussed with the help of theoretical calculations and PES-PIMS experiment. After ionization, the parent ions prefer the dissociation of the C—O bond and giving the fragments CF3OCO+ and CF3+. It demonstrated that the ultraviolet photoelectron and photoionization mass spectrometer could be applied widely in the study of atmospheric photochemical reaction. Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-YW-205), Hundred Talents Fund, 973 Program of Ministry of Science and Technology of China (Grant No. 2006CB403701) and the National Natural Science Foundation of China (Grant Nos. 20577052, 20673123)  相似文献   

19.
UV irradiation of the long-lived radical [(CF3)2CF]2C·C2F5 (1) in a hexafluoropropylene trimer (HFPT) glassy matrix at 77 K and in a HFPT solution at 300 K leads to its decomposition to the ·CF3 radical and perfluoroolefin molecule. About 90% of the ·CF3 radicals formed recombine at 300 K. The remaining radicals add to the HFPT molecules generating the long-lived radicals [(CF3)2CF]3C·. Unlike the ·CF3 radicals produced by the photodecomposition of radicals 1, the ·CF3 radicals formed during radiolysis of HFPT are not stabilized in the glassy HFPT matrix at 77 K.  相似文献   

20.
Fluorocarbon (CF+ x), fluorine (F+), and carbon (C+) ion beams with highcurrent density (50i<800 A/cm2) were irradiated to Si and SiO2surfaces to investigate the influence of the ion species on the etchingefficiency. The ion beams were extracted from magnetized helicon-wave CF4plasmas operated in pulsed modes. The CF+ 3 beam had the largest etchingefficiency for Si at the same beam energy. When the same data weresummarized as a function of the momentum of the incident ion beam, thedifference in the etching efficiency became small, although the CF+ 3 beamstill had a slightly larger etching efficiency. On the other hand, theetching efficiency for SiO2 by the CF+ 3 beam was larger than that by theother ion beams in the low-momentum region. In addition, in the low-momentumregion, the etching efficiency for SiO2 by CF+ 3 was larger than that forSi. These results suggest the high chemical reactivity of CF+ 3 with SiO2,leading to the high etching selectivity of SiO2 over underlying Si in thefabrication of semiconductor devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号