首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Experimental results are presented on the flooding gas velocity in tubes over a wide range of parameters—tube diameter, tube length, liquid flow rate, liquid viscosity and surface tension. The flooding phenomenon is caused by interaction between the waves on the liquid film and the upward gas stream. By measuring variation of the maximum height of the wavy liquid films with an increase of the gas flow rate, the complicated effects of tube length and surface tension on flooding are revealed. The data of the flooding velocity are empirically correlated in termes of nondimensional groups for each tube length.  相似文献   

2.
Drop sizes in annular two-phase flow   总被引:2,自引:0,他引:2  
Drop sizes in annular flow have been measured using a diffraction technique. Several series of experiments were carried out to determine the effect of gas velocity, drop concentration, film flow rate and tube diameter on drop size. Film flow rate and tube diameter have been found to have very little influence on the sizes of drops produced. An empirical equation which describes the drop sizes is presented.  相似文献   

3.
The effect of tube diameter on two-phase frictional pressure drop was investigated in circular tubes with inner diameters of 0.6, 1.2, 1.7, 2.6 and 3.4 mm using air and water. The gas and liquid superficial velocity ranges were 0.01-50 m/s and 0.01-3 m/s, respectively. The gas and liquid flow rates were measured and the two-phase flow pattern images were recorded using high-speed CMOS camera. Unique flow patterns were observed for smaller tube diameters. Pressure drop was measured and compared with various existing models such as homogeneous model and Lockhart-Martinelli model. It appears that the dominant effect of surface tension shrinking the flow stratification in the annular regime is important. It was found that existing models are inadequate in predicting the pressure drop for all the flow regimes visualized. Based on the analysis of present experimental frictional pressure drop data a correlation is proposed for predicting Chisholm parameter “C” in slug annular flow pattern. For all other flow regimes Chisholm’s original correlation appears to be adequate except the bubbly flow regime where homogeneous model works well. The modification results in overall mean deviation of pressure drop within 25% for all tube diameters considered. This approach of flow regime based modification of liquid gas interaction parameter appears to be the key to pressure drop prediction in narrow tubes.  相似文献   

4.
Heat transfer, pressure drop, and void fraction were simultaneously measured for upward heated air–water non-boiling two-phase flow in 0.51 mm ID tube to investigate thermo–hydro dynamic characteristics of two-phase flow in micro-channels. At low liquid superficial velocity jl frictional pressure drop agreed with Mishima–Hibiki’s correlation, whereas agreed with Chisholm–Laird’s correlation at relatively high jl. Void fraction was lower than the homogeneous model and conventional empirical correlations. To interpret the decrease of void fraction with decrease of tube diameter, a relation among the void fraction, pressure gradient and tube diameter was derived. Heat transfer coefficient fairly agreed with the data for 1.03 and 2.01 mm ID tubes when jl was relatively high. But it became lower than that for larger diameter tubes when jl was low. Analogy between heat transfer and frictional pressure drop was proved to hold roughly for the two-phase flow in micro-channel. But satisfactory relation was not obtained under the condition of low liquid superficial velocity.  相似文献   

5.
A new prediction method for the frictional pressure drop in annular two-phase flow is presented. This new prediction method focuses on the aerodynamic interaction between the liquid film and the gas core in annular flows, and explicitly takes into account the asymmetric liquid film distribution in the tube cross section induced by the action of gravity in horizontal tubes operated at low mass fluxes. The underlying experimental database contains 6291 data points from the literature with 13 fluid combinations (both single-component saturated fluids such as water, carbon dioxide and refrigerants R12, R22, R134a, R245fa, R410a, R1234ze, and two-component fluids such as water-argon, water-nitrogen, alcohol-argon, water plus alcohol-argon and water-air), vertical and horizontal tubes and annuli with diameters from 3 mm to 25 mm, and both adiabatic and evaporating flow conditions. The new prediction method is very simple to implement and use, is physically based and outperforms existing pressure drop correlations (mean absolute error of 12.9%, and 7 points out of 10 captured to within ±15%).  相似文献   

6.
In this work, co-current flow characteristics of air/non-Newtonian liquid systems in inclined smooth pipes are studied experimentally and theoretically using transparent tubes of 20, 40 and 60 mm in diameter. Each tube includes two 10 m long pipe branches connected by a U-bend that is capable of being inclined to any angle, from a completely horizontal to a fully vertical position. The flow rate of each phase is varied over a wide range. The studied flow phenomena are bubbly flow, stratified flow, plug flow, slug flow, churn flow and annular flow. These are observed and recorded by a high-speed camera over a wide range of operating conditions. The effects of the liquid phase properties, the inclination angle and the pipe diameter on two-phase flow characteristics are systematically studied. The Heywood–Charles model for horizontal flow was modified to accommodate stratified flow in inclined pipes, taking into account the average void fraction and pressure drop of the mixture flow of a gas/non-Newtonian liquid. The pressure drop gradient model of Taitel and Barnea for a gas/Newtonian liquid slug flow was extended to include liquids possessing shear-thinning flow behaviour in inclined pipes. The comparison of the predicted values with the experimental data shows that the models presented here provide a reasonable estimate of the average void fraction and the corresponding pressure drop for the mixture flow of a gas/non-Newtonian liquid.  相似文献   

7.
Critical heat flux (CHF) experiments using deionized water as working fluid have been conducted in a range of pressure from 0.6 to 4.2 MPa, mass flow velocity from 60 to 130 kg/ms and wall heat flux from 10 to 90 kW/m2 for vertical narrow annuli with annular gap sizes of 0.95 and 1.5 mm. We found that the CHF, occurring only on the inside tube, or on the outside tube or on both tubes of the annular channel, depends on the heat flux ratio between surfaces of the outside and inside tubes. The CHF, occurring on the surface of the inside tube, reaches the maximum value under the pressure of 2.3 MPa while it occurring on the surface of the outside tube keeps increasing with the increase of the pressure. The CHF, occurring on the inside or outside tubes, increases with the increase of the mass flow velocity and the annular gap size; and decreases with the increase of critical quality and the other tube wall heat flux. Empirical correlations, which agree quite well with the experimental data, have been developed to predict the CHF occurring on surfaces of the inside or outside tubes of the narrow annular channel on the conditions of low pressure and low flow.  相似文献   

8.
A mathematical model based on the annular flow pattern is developed to simulate the evaporation of refrigerants flowing under varied heat flux in a double tube evaporator. The finite difference form of governing equations of this present model is derived from the conservation of mass, energy and momentum. The experimental set-up is designed and constructed to provide the experimental data for verifying the simulation results. The test section is a 2.5 m long counterflow double tube heat exchanger with a refrigerant flowing in the inner tube and heating water flowing in the annulus. The inner tube is made from smooth horizontal copper tubing of 9.53 mm outer diameter and 7.1 mm inner diameter. The agreement of the model with the experimental data is satisfactory. The present model can be used to investigate the axial distributions of the temperature, heat transfer coefficient and pressure drop of various refrigerants. Moreover, the evaporation rate or the other relevant parameters that is difficult to measure in the experiment are predicted and presented here. The results from the present mathematical model show that the saturation pressure and temperature of refrigerant decrease along the tube due to the tube wall friction and the flow acceleration of refrigerant. The liquid heat transfer coefficient increases with the axial length due to reducing the thickness of the liquid refrigerant film. Due to increase of the liquid heat transfer coefficient, increasing wall heat flux is obtained.Finally, the evaporation rate of refrigerant increases with increasing wall heat flux.  相似文献   

9.
In this study, non-intrusive pressure drop, liquid base film thickness distribution, and wave behavior measurements have been obtained for 206 horizontal annular two-phase (air–water) flow conditions in 8.8, 15.1, and 26.3 mm ID tubes. Reliable wave velocity measurements are available for 185 of these flow conditions, while 131 flow conditions allow for reliable wave frequency measurements. The wave velocity is found to be predicted to within 9% by gas friction velocity and 6% by an optimized correlation of similar structure. Wave frequency can also be predicted with a simple correlation to within 5% for the 8.8 and 15.1 mm tubes, but a separate relation is required to explain 26.3 mm frequency data. The differences in wave behavior between the annular and wavy-annular/wavy regimes are also discussed.  相似文献   

10.
We experimentally determine the droplet production rate at a water surface where either single or multiple bubbles (bubbly flow) with similar mean diameters disintegrate and produce film and jet droplets. A detailed assessment of film drop production from bubbly flow is important, since most presently used correlations are based on single-bubble measurements. Moreover, jet drops––even though they contain a much larger fluid volume––are de-entrained into the water surface in most technical and geophysical applications. Detailed phase Doppler anemometry (PDA) measurements are performed in the vicinity of the water surface with long sampling times. For a considered mean diameter of approximately 3 mm, the size distribution of the non spherical bubbles is determined from photographic images. From single-bubble measurements we find, consistent with literature data, a narrow size distribution of the jet drops with a mean diameter of 477 μm. For bubbly flow, the maximum is shifted to somewhat smaller jet drop diameters (425 μm) and the production of film droplets increases significantly. We relate this increase to the coalescence of bubbles prior to their disintegration at the surface. Our results therefore show that for a fixed bubble size and gas flow rate the number of film drops entrained from a bubbly flow is underestimated, if the estimate is based on single-bubble data.  相似文献   

11.
The flow boiling patterns of liquid nitrogen in a vertical mini-tube with an inner diameter of 1.931 mm are visualized with a high-speed digital camera. The superficial gas and liquid velocities are in the ranges of 0.01–26.5 m/s and 0.01–1.2 m/s, respectively. Four typical flow patterns, namely, bubbly, slug, churn and annular flow are observed. Some interesting scenes about the entrainment and liquid droplet deposition in the churn and annular flow, and the flow reversal with the indication of negative pressure drop, are also presented. Based on the visualization, the two-phase flow regime maps are obtained. Compared with the flow regime maps for gas–water flow in tubes with similar hydraulic diameters, the region of slug flow in the present study reduces significantly. Correspondingly, the transition boundary from the bubbly flow to slug flow shifts to higher superficial gas velocity, and that of churn to annular flow moves to lower superficial gas velocity. Moreover, time-averaged void fraction is calculated by quantitative image-digitizing technique and compared with various prediction models. Finally, three kinds of oscillations with long-period and large-amplitude are found, possible explanation for the oscillations is given by comparing the instantaneous flow images with the data of pressure, mass flux and temperature recorded synchronously.  相似文献   

12.
Gas entrainment by a liquid film falling around a stationary Taylor bubble in a 0.1 m diameter vertical tube is studied experimentally with the purpose of validating a model formulated in an earlier phase of our research. According to this model for a fixed liquid velocity the gas entrainment should be proportional to the waviness of the film (its intermittency) and the wave height and inversely proportional to the film thickness. For Taylor bubble lengths ranging from 1D to 15D these film parameters have been measured with a Laser Induced Fluorescence technique. The gas entrainment has been determined from the net gas flux into the liquid column underneath the Taylor bubble by using data on gas re-coalescence into the rear of the Taylor bubble. These data are available for lengths ranging from 4.5D to 9D. The model results with the measured film characteristics compare well with the observed gas entrainment. The fact that the net gas flux becomes constant for long Taylor bubbles, whereas the wave height still increases, warrants further study.  相似文献   

13.
In the present study, the heat flux received by a bubble pump, which was simulated to a vertical tube 1 m long and with a variable diameter, was optimized. A numerical study was carried out in order to solve balance equations concerning the water-ammonia mixture in the up flow. The two-fluid model was used to derive the equations. A numerical study was carried out on a heat flux between 1 and 70 kW m−2 and the liquid velocity was determined. The optimum flux was determined for a tube diameter equal to 4, 6, 8 and 10 mm and a mass flow rate ranging from 10 to 90 kg m−2 s−1. The optimum heat flux was correlated as a function of the tube diameter and mass flow rate, while the minimum heat flux required for pumping was correlated as a function of the tube diameter.  相似文献   

14.
Experiments are described on the gas velocity at the onset of flooding and the maximum height of the wavy liquid film flowing downwards on a rod surface. On the basis of a simple analysis for a large amplitude wave on the liquid film, a flooding condition relating the maximum wave height to the gas velocity at the onset of flooding is derived. The values predicted by this condition show a good agreement with the measured results.An equivalent diameter of the channel is defined for the flooding velocity. Applying this diameter, the present data for annuli and rod bundles are well correlated by the same empirical equation as that for flow in circular tubes presented previously.  相似文献   

15.
This study experimentally investigated the flow boiling heat transfer, pressure drop, and flow pattern in a horizontal square minichannel with a hydraulic diameter of 2.0 mm, and the effects of mass flux, vapor quality, heat flux, and refrigerant properties on the flow boiling characteristics were clarified. The heat transfer coefficient and pressure drop of R32 and R1234yf were measured in a mass flux range of 50–400 kgm−2s−1 at a saturation temperature of 15 °C. The flow pattern of the square minichannel outlet was observed and was classified as plug, wavy, churn, and annular flows. The heat transfer coefficients in the square minichannel were larger than those in the circular minichannel with a similar hydraulic diameter at low mass flux conditions. The heat transfer coefficients of R32 indicated higher values compared with those of R1234yf at same mass flux and qualities. An empirical heat transfer model taking into account the forced convection, nucleate boiling, and thin liquid film evaporation was developed for horizontal square and circular minichannels. The frictional pressure drop of R32 was 1.5–2 times higher than that of R1234yf at same mass flux and vapor quality condition, and the effect of channel shape on the frictional pressure drop was small unlike the boiling heat transfer.  相似文献   

16.
Flow boiling heat transfer in a vertical spirally internally ribbed tube   总被引:3,自引:0,他引:3  
 Experiments of flow boiling heat transfer and two-phase flow frictional pressure drop in a spirally internally ribbed tube (φ22×5.5 mm) and a smooth tube (φ19×2 mm) were conducted, respectively, under the condition of 6×105 Pa (absolute atmosphere pressure). The available heated length of the test sections was 2500 mm. The mass fluxes were selected, respectively, at 410, 610 and 810 kg/m2 s. The maximum heat flux was controlled according to exit quality, which was no more than 0.3 in each test run. The experimental results in the spirally internally ribbed tube were compared with that in the smooth tube. It shows that flow boiling heat transfer coefficients in the spirally internally ribbed tube are 1.4–2 times that in the smooth tube, and the flow boiling heat transfer under the condition of smaller temperature differences can be achieved in the spirally internally ribbed tube. Also, the two-phase flow frictional pressure drop in the spirally internally ribbed tube increases a factor of 1.6–2 as compared with that in the smooth tube. The effects of mass flux and pressure on the flow boiling heat transfer were presented. The effect of diameters on flow boiling heat transfer in smooth tubes was analyzed. Based on the fits of the experimental data, correlations of flow boiling heat transfer coefficient and two-phase flow frictional factor were proposed, respectively. The mechanisms of enhanced flow boiling heat transfer in the spirally internally ribbed tube were analyzed. Received on 1 December 1999  相似文献   

17.
The flow patterns and heat transfer coefficients of R-22 and R-134a during evaporation in small diameter tubes were investigated experimentally. The evaporation flow patterns of R-22 and R-134a were observed in Pyrex sight glass tubes with 2 and 8 mm diameter tube, and heat transfer coefficients were measured in smooth and horizontal copper tubes with 1.77, 3.36 and 5.35 mm diameter tube, respectively. In the flow patterns during evaporation process, the annular flows in 2 mm glass tube occurred at a relatively lower vapor quality compared to 8 mm glass tube. The flow patterns in 2 mm glass tube did not agree with the Mandhane’s flow pattern maps. The evaporation heat transfer coefficients in the small diameter tubes (d i  < 6 mm) were observed to be strongly affected by tube diameters, and to differ from those in the large diameter tubes. The heat transfer coefficients of 1.77 mm tube were higher than those of 3.36 mm and 5.35 mm tube. Most of the existing correlations failed to predict the evaporation heat transfer coefficient in small diameter tubes. Therefore, based on the experimental data, the new correlation is proposed to predict the evaporation heat transfer coefficients of R-22 and R-134a in small diameter tubes.  相似文献   

18.
This article reports an experimental investigation on flow boiling heat transfer and pressure drop of refrigerant R-134a in a smooth horizontal and two microfinned tubes from different manufacturers with the same geometric characteristics. Experiments have been carried out in an experimental facility developed for change of phase studies with a test section made with 9.52 mm external diameter, 1.5 m long copper tubes, electrically heated by tape resistors wrapped on the external surface. Tests have been performed under the following conditions: inlet saturation temperature of 5 °C, vapor qualities from 5% to 90%, mass velocity from 100 to 500 kg/s m2, and a heat flux of 5 kW/m2. Experimental results indicated that the heat transfer performance was basically the same for both microfin tubes. The pressure drop is higher in the microfinned tubes in comparison to the smooth tube over the whole range of mass velocities and vapor qualities. The enhancement factor, used to evaluate the combination of heat transfer and pressure drop, is higher than one for both tubes for mass velocities lower than 300 kg/s m2. Values lower than one have been obtained for both tubes in the mass velocity upper range as a result of a significant pressure drop increment not followed by a correspondent increment in the heat transfer coefficient. Some images, illustrating the flow patterns, were obtained from the visualization section, located in the exit of the test section with the same internal diameter of the tested tube.  相似文献   

19.
This paper reports on an experimental study of saturated flow boiling of R134a inside a circular vertical quartz tube coated with a transparent heater. The inner diameter of the tube was 1.33 mm and the heated length 235.5 mm. The flow pattern at high vapor qualities and the dryout of the liquid film were studied using a high speed CCD camera at the mass fluxes 47.4 and 124.4 kg/m2 s in up flow at 6.425 bar. The heat fluxes ranged from 5 to 13.6 kW/m2 for the lower mass flux and from 20 to 32.4 kW/m2 for the higher mass flux.

The behavior of the flow close to dryout was found to be different at low and high mass flux. At low mass flux the location of the liquid front fluctuated with waves passing high up in the tube. In between the waves, a thin film was formed, slowly evaporating without breaking up.

At high mass flux the location of the liquid front was more stable. In this case the liquid film was seen to break up into liquid streams and dry zones on the tube wall.  相似文献   


20.
Experiments were carried out on low pressure, steam-water, condensing annular flow in a 38.1 mm i.d. horizontal tube. The velocity of the steam at inlet was in the range 97–186 m/s.Measurements of the liquid film flow rate at the end of the test section, which arose as a result of condensation, entrainment, and deposition, were made by extracting the film through a porous sinter bush. The liquid flow rate in the vapour core at exit was deduced from these measurements together with a heat balance on the condenser section.These results were compared with three correlations for entrainment developed from air-water studies. On the basis of the experimental data available, there was sufficient agreement in one case to warrant further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号