首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
In this paper, vibration analysis of the coupled system of double-layered graphene sheets (CS-DLGSs) embedded in a Visco-Pasternak foundation is carried out using the nonlocal elasticity theory of orthotropic plate. The two DLGSs are coupled by an enclosing viscoelastic medium which is simulated as a Visco-Pasternak foundation. Considering the Von Kármán nonlinear strain-displacement-relations, the motion equations are derived using the Hamilton's principle. Differential quadrature method (DQM) is applied to obtain the frequency ratio for various boundary conditions. The detailed parametric study is conducted, focusing on the combined effects of the nonlocal parameter, aspect ratio, graphene sheet's size, boundary conditions and the elastic and viscoelastic medium coefficients on the frequency ratio of CS-DLGSs. In this coupled system, two case of DLGSs vibration are investigated and compared with each other: (1) In-phase vibration (2) Out-of-phase vibration. The results indicate that the frequency ratio of the CS-DLGSs is more than the single-layered graphene sheet (SLGS). The results are in good agreement with the previous researches.  相似文献   

2.
With the aid of atomistic multiscale modelling and analytical approaches, buckling strength has been determined for carbon nanofibres/epoxy composite systems. Various nanofibres configurations considered are single walled carbon nano tube (SWCNT) and single layer graphene sheet (SLGS) and SLGS/SWCNT hybrid systems. Computationally, both eigen-value and non-linear large deformation-based methods have been employed to calculate the buckling strength. The non-linear computational model generated here takes into account of complex features such as debonding between polymer and filler (delamination under compression), nonlinearity in the polymer, strain-based damage criteria for the matrix, contact between fillers and interlocking of distorted filler surfaces with polymer. The effect of bridging nanofibres with an interlinking compound on the buckling strength of nano-composites has also been presented here. Computed enhancement in buckling strength of the polymer system due to nano reinforcement is found to be in the range of experimental and molecular dynamics based results available in open literature. The findings of this work indicate that carbon based nanofillers enhance the buckling strength of host polymers through various local failure mechanisms.  相似文献   

3.
In this article, the buckling behavior of nanoscale circular plates under uniform radial compression is studied. Small-scale effect is taken into consideration. Using nonlocal elasticity theory the governing equations are derived for the circular single-layered graphene sheets (SLGS). Explicit expressions for the buckling loads are obtained for clamped and simply supported boundary conditions. It is shown that nonlocal effects play an important role in the buckling of circular nanoplates. The effects of the small scale on the buckling loads considering various parameters such as the radius of the plate and mode numbers are investigated.  相似文献   

4.
This paper investigates the thermo-electro-mechanical vibration of the rectangular piezoelectric nanoplate under various boundary conditions based on the nonlocal theory and the Mindlin plate theory. It is assumed that the piezoelectric nanoplate is subjected to a biaxial force, an external electric voltage and a uniform temperature rise. The Hamilton's principle is employed to derive the governing equations and boundary conditions, which are then discretized by using the differential quadrature (DQ) method to determine the natural frequencies and mode shapes. The detailed parametric study is conducted to examine the effect of the nonlocal parameter, thermo-electro-mechanical loadings, boundary conditions, aspect ratio and side-to-thickness ratio on the vibration behaviors.  相似文献   

5.
An atomistic simulation method is adopted to investigate the elastic characteristics of defect-free single-layered graphene sheet (SLGS). To this end, the equivalent structural beam is employed to model interatomic forces of the covalently bonded carbon atoms. The beam properties are computed by considering the covalent bond stiffnesses. To calculate the Young’s modulus, shear modulus and Poisson’s ratio of the SLGS, the equivalent continuum sheet model is proposed and the effect of chirality on the SLGS elastic properties is examined. It is perceived that there exists a good agreement between the atomistic modeling results and the data available in the literature.  相似文献   

6.
In this article, an atomistic model is developed to study the buckling and vibration characteristics of single-layered graphene sheets (SLGSs). By treating SLGSs as space-frame structures, in which the discrete nature of graphene sheets is preserved, they are modeled using three-dimensional elastic beam elements for the bonds. The elastic moduli of the beam elements are determined via a linkage between molecular mechanics and structural mechanics. Based on this model, the critical compressive forces and fundamental natural frequencies of single-layered graphene sheets with different boundary conditions and geometries are obtained and then compared. It is indicated that the compressive buckling force decreases when the graphene sheet aspect ratio increases. At low aspect ratios, the increase of aspect ratios will result in a significant decrease in the critical buckling load. It is also indicated that increasing aspect ratio at a given side length results in the convergence of buckling envelops associated with armchair and zigzag graphene sheets. The influence of boundary conditions will be studied for different geometries. It will be shown that the influence of boundary conditions is not significant for sufficiently large SLGSs.  相似文献   

7.
The present study has theoretically investigated the combined torsional buckling of double-walled carbon nanotubes (DWCNTs) with axial load in the multi-field coupled condition. The effects of torsion, axial load, thermal-electrical change, surrounding elastic medium and the Van der Waals forces are all taken into consideration. The governing equation of buckling for CNTs subjected to thermo-electro-mechanical loadings has been established based on an elastic shell model of continuum mechanics. Reasonable s...  相似文献   

8.
In the present work, thermal buckling of single-layered graphene sheets lying on an elastic medium is analyzed. For this purpose, the sinusoidal shear deformation plate theory in tandem with the nonlocal continuum theory, which takes the small scale effects into account, is employed. The non-linear stability equations, which contain the reaction of Winkler–Pasternak elastic substrate medium, are derived and then solved analytically for a plate with various boundary conditions and based on various plate theories. Closed form solutions are formulated for three types of thermal loadings as uniform, linear and nonlinear temperature rise through the thickness of the plate. A number of examples are presented to illustrate the numerical results concerned with the buckling temperature response of nanoplates resting on two-parameter elastic foundations. The influences played by transversal shear deformation, plate aspect ratio, side-to-thickness ratio, nonlocal parameter, and elastic foundation parameters are all investigated.  相似文献   

9.
This article presents the experimental implementation and results of a hybrid passive/active absorber (smart foam) made up from the combination of a passive absorbent (foam) and a curved polyvinylidene fluoride (PVDF) film actuator bonded to the rear surface of the foam. Various smart foam prototypes were built and tested in active absorption experiments conducted in an impedance tube under plane wave propagation condition at frequencies between 100 and 1500 Hz. Three control cases were tested. The first case used a fixed controller derived in the frequency domain from estimations of the primary disturbance at a directive microphone position in the tube and the transfer function between the control PVDF and the directive microphone. The two other cases used an adaptive time-domain feedforward controller to absorb either a single-frequency incident wave or a broadband incident wave. The non-linearity of the smart foams and the causality constraint were identified to be important factors influencing active control performance. The effectiveness of the various smart foam prototypes is discussed in terms of the active and passive absorption coefficients as well as the control voltage of the PVDF actuator normalized by the incident sound pressure.  相似文献   

10.
In this study, an analytical method of the small scale parameter on the vibration of single-walled Boron Nitride nanotube (SWBNNT) under a moving nanoparticle is presented. SWBNNT is embedded in bundle of carbon nanotubes (CNTs) which is simulated as Pasternak foundation. Using Euler–Bernoulli beam (EBB) model, Hamilton's principle and nonlocal piezoelasticity theory, the higher order governing equation is derived. The effects of electric field, elastic medium, slenderness ratio and small scale parameter are investigated on the vibration behavior of SWBNNT under a moving nanoparticle. Results indicate the importance of using surrounding elastic medium in decrease of normalized dynamic deflection. Indeed, the normalized dynamic deflection decreases with the increase of the elastic medium stiffness values. The electric field has significant role on the nondimensional fundamental frequencies, as a smart controller. The results of this work is hoped to be of use in design and manufacturing of smart nano-electro-mechanical devices in advanced medical applications such as drug delivery systems with great applications in biomechanics.  相似文献   

11.
In this paper, surface effects on the dispersion characteristics of elastic waves propagating in an infinite piezoelectric nanoplate are investigated by using the surface piezoelectricity model. Based on the surface piezoelectric constitutive theory, the presence of surface stresses and surface electric displacements exerting on the boundary conditions of the piezoelectric nanoplate is taken into account in the modified mechanical and electric equilibrium relations. The partial wave technique is employed to obtain the general solutions of governing equations, and the dispersion relations with surface effects are expressed in an explicit closed form. The impacts of surface piezoelectricity, residual surface stress and plate thickness on the propagation properties of elastic waves are analyzed in detail. Numerical results show that the dispersion behaviors in piezoelectric nanoplates are size-dependent, and there exists a critical plate thickness above which the surface effects may vanish.  相似文献   

12.
姚小虎  Han Qiang 《物理学报》2008,57(8):5056-5062
考虑碳纳米管周边弹性介质和层间范德瓦耳斯力的作用,利用连续介质力学的壳体理论,建立了热力耦合作用下碳纳米管屈曲问题的控制方程,给出了相应的临界屈曲扭矩的解析解.数值模拟结果表明,在低温和室温环境下,碳纳米管的临界屈曲载荷随着温度变化量的增加而提高;在高温环境下,碳纳米管的临界屈曲载荷随着温度变化量的增加而降低. 关键词: 碳纳米管 屈曲 热力耦合  相似文献   

13.
In this paper, we present a coupled finite element/boundary element method (FEM/BEM) for control of noise radiation and sound transmission of vibrating structure by passive piezoelectric techniques. The system consists of an elastic structure (with surface mounted piezoelectric patches) coupled to external/internal acoustic domains. The passive shunt damping strategy is employed for vibration attenuation in the low frequency range. The originality of the present paper lies in evaluating the classically used FEM/BEM methods for structural–acoustics problems when taking account smart systems at the fluid–structure interfaces.  相似文献   

14.
The booming development of nanotechnology motivates the widespread applications of piezoelectric nanomaterials (e.g. ZnO, ZnS, GaN) and their nanostructures (e.g. nanobelts, nanorings nanowires). It is noted that the coupled field analysis of nano-sized piezoelectric structure under non-uniform temperature in-service environment is of great importance for the fabrication and exploitation of nanoelectromechanical devices. In such situation, spatial size effect of heat conduction is necessary to be taken into account due to its important significance in characterizing the nonlocal feature of heat transport in nanosystems. In this study, thermal nonlocal effect is introduced into the thermo-electro-mechanical model based on nonlocal elasticity theory to further shed light on the size-dependent coupling behavior of thermal, electric, and elastic fields. The coupled field equations involving size-dependent parameters are derived. The solutions can be obtained using Laplace transformation methods. Parametric studies are conducted to evaluate the influences of thermal as well as elastic nonlocal parameters on the transient responses. The results indicate that the piezoelectric performance of the nanoplate is greatly improved in the presence of thermal nonlocal effect.  相似文献   

15.
Using density functional theory calculations, we investigate the electronic properties of arsenene/graphene van der Waals (vdW) heterostructures by applying external electric field perpendicular to the layers. It is demonstrated that weak vdW interactions dominate between arsenene and graphene with their intrinsic electronic properties preserved. We find that an n-type Schottky contact is formed at the arsenene/graphene interface with a Schottky barrier of 0.54 eV. Moreover, the vertical electric field can not only control the Schottky barrier height but also the Schottky contacts (n-type and p-type) and Ohmic contacts (n-type) at the interface. Tunable p-type doping in graphene is achieved under the negative electric field because electrons can transfer from the Dirac point of graphene to the conduction band of arsenene. The present study would open a new avenue for application of ultrathin arsenene/graphene heterostructures in future nano- and optoelectronics.  相似文献   

16.
In this paper, we study the buckling properties of circular double-layered graphene sheets (DLGSs), using plate theory. The two graphene layers are modeled as two individual sheets whose interactions are determined by the Lennard-Jones potential of the carbon-carbon bond. An analytical solution of coupled governing equations is proposed for predicting the buckling properties of circular DLGSs. Using the present theoretical approach, the influences of boundary conditions, plate sizes, and buckling-mode shapes on the buckling behaviors are investigated in detail. The buckling stability is significantly affected by the buckling-mode shapes. As a result of van der Waals interactions, the buckling stress of circular DLGSs is much larger for the anti-phase mode than for the in-phase mode.  相似文献   

17.
Silicene takes precedence over graphene due to its buckling type structure and strong spin orbit coupling. Motivated by these properties, we study the silicene bilayer in the presence of applied perpendicular electric field and intrinsic spin orbit coupling to probe as quantum spin/valley Hall effect. Using analytical approach, we calculate the spin Chern-number of bilayer silicene and then compare it with monolayer silicene. We reveal that bilayer silicene hosts double spin Chern-number as compared to single layer silicene and therefore accordingly has twice as many edge states in contrast to single layer silicene. In addition, we investigate the combined effect of intrinsic spin orbit coupling and the external electric field, we find that bilayer silicene, likewise single layer silicene, goes through a phase transitions from a quantum spin Hall state to a quantum valley Hall state when the strength of the applied electric field exceeds the intrinsic spin orbit coupling strength. We believe that the results and outcomes obtained for bilayer silicene are experimentally more accessible as compared to bilayer graphene, because of strong SO coupling in bilayer silicene.  相似文献   

18.
The size-dependent static buckling responses of circular, elliptical and skew nanoplates made of functionally graded materials (FGMs) are investigated in this article based on an isogeometric model. The Eringen nonlocal continuum theory is implemented to capture nonlocal effects. According to the Gurtin–Murdoch surface elasticity theory, surface energy influences are also taken into account by the consideration of two thin surface layers at the top and bottom of nanoplate. The material properties vary in the thickness direction and are evaluated using the Mori–Tanaka homogenization scheme. The governing equations of buckled nanoplate are achieved by the minimum total potential energy principle. To perform the isogeometric analysis as a solution methodology, a novel matrix-vector form of formulation is presented. Numerical examples are given to study the effects of surface stress as well as other important parameters on the critical buckling loads of functionally graded nanoplates. It is found that the buckling configuration of nanoplates at small scales is significantly affected by the surface free energy.  相似文献   

19.
We study the spin-dependent tunneling time, including group delay and dwell time, in a graphene based asymmetrical barrier with Rashba spin–orbit interaction in the presence of strain, sandwiched between two normal leads. We find that the spin-dependent tunneling time can be efficiently tuned by the barrier width, and the bias voltage. Moreover, for the zigzag direction strain although the oscillation period of the dwell time does not change, the oscillation amplitude increases by increasing the incident electron angle. It is found that for the armchair direction strain unlike the zigzag direction the group delay time at the normal incidence depends on the spin state of electrons and Hartman effect can be observed. In addition, for the armchair direction strain the spin polarization increases with increasing the RSOI strength and the bias voltage. The magnitude and sign of spin polarization can be manipulated by strain. In particular, by applying an external electric field the efficiency of the spin polarization is improved significantly in strained graphene, and a fully spin-polarized current is generated.  相似文献   

20.
胡振华  黄德修 《物理学报》2005,54(4):1788-1793
基于V型三能级模型研究了非对称耦合量子阱(ACQW)线性吸收与色散特性. 理论结果表明:在小偏置区,由沿生长方向的外加电场引起的强量子限域Stark频移导致非共振吸收,线性折射率大幅度降低,表现为色散猝灭特性. 而随负偏压进一步增加, 由于量子限域Stark效应消失,其吸收与色散特性则与单量子阱最低激子态相类似. 这意味着ACQW具有随外加电场变化的可控色散特性. 关键词: 非对称耦合量子阱 量子相干 可控色散  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号