首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
张林  汪军 《理论物理通讯》2011,55(4):709-714
We report a theoretical study on producing electrically spin-polarized current in the Rashba ring with parallel double dots embedded, which are subject to two time-dependent microwave fields. By means of the Keldysh Green's function method, we present an analytic result of the pumped current at adiabatic limit and demonstrate that the interplay between the quantum pumping effectand spin-dependent quantum interference can lead to an arbitrarily controllable spin-polarized current in the device. The magnitude and direction of the charge and spin current can be effectively modulated by system parameters such as the pumping phase difference, Rashba precession phase, and the dynamic phase difference of electron traveling in two arms of ring; moreover, thespin-polarization degree of the charge current can also be tuned in the range [-∞, +∞]. Our findings may shed light on the all-electric way to produce the controllable spin-polarized charge current in the field of spintronics.  相似文献   

2.
The spin Hall current in a two-dimensional electron system with nonuniform Rashba spin–orbit interaction (SOI) is investigated by means of the lattice Green's function method. Large electric and spin Hall currents are produced by this nonuniform Rashba SOI, while the electric Hall current vanishes in the uniform Rashba SOI system. A nondissipative spin Hall current is also produced, without any longitudinal voltage bias, any external magnetic field and any special class of band insulators.  相似文献   

3.
张林  汪军 《中国物理 B》2011,20(12):127203-127203
We theoretically study the persistent currents flowing in a Rashba quantum ring subjected to the Rashba spin-orbit interaction. By introducing uniform or nonuniform magnetization into the ring, we find that a nonzero persistent charge current circulates in the ring, which stems from the original equilibrium spin current due to the Rashba spin-orbit interaction. Because of broken time reversal symmetry, the two oppositely flowing spin-up and spin-down charge currents of the equilibrium spin current are no longer equal, and so a net persistent charge current can flow in the system. It is also found that the persistent current can be modulated by the Fermi energy, the Rashba spin-orbit interaction strength and the magnetization in the ring. Moreover, the magnetization perpendicular to the ring plane can optimize the current. The persistent current flowing in the ring is a manifestation of the nonzero equilibrium spin current existing in the ring.  相似文献   

4.
龚士静  段纯刚 《物理学报》2015,64(18):187103-187103
自旋轨道耦合是电子自旋与轨道相互作用的桥梁, 它提供了利用外电场来调控电子的轨道运动、进而调控电子自旋状态的可能. 固体材料中有很多有趣的物理现象, 例如磁晶各向异性、自旋霍尔效应、拓扑绝缘体等, 都与自旋轨道耦合密切相关. 在表面/界面体系中, 由于结构反演不对称导致的自旋轨道耦合称为Rashba自旋轨道耦合, 它最早在半导体材料中获得研究, 并因其强度可由栅电压灵活调控而备受关注, 成为电控磁性的重要物理基础之一. 继半导体材料后, 金属表面成为具有Rashba自旋轨道耦合作用的又一主流体系. 本文以Au(111), Bi(111), Gd(0001)等为例综述了磁性与非磁性金属表面Rashba自旋轨道耦合的研究进展, 讨论了表面电势梯度、原子序数、表面态波函数的对称性, 以及表面态中轨道杂化等因素对金属表面Rashba自旋轨道耦合强度的影响. 在磁性金属表面, 同时存在Rashba自旋轨道耦合作用与磁交换作用, 通过Rashba自旋轨道耦合可能实现电场对磁性的调控. 最后, 阐述了外加电场和表面吸附等方法对金属表面Rashba自旋轨道耦合的调控. 基于密度泛函理论的第一性原理计算和角分辨光电子能谱测量是金属表面Rashba自旋轨道耦合的两大主要研究方法, 本文综述了这两方面的研究结果, 对金属表面Rashba自旋轨道耦合进行了深入全面的总结和分析.  相似文献   

5.
We investigate the adiabatic quantum pump phenomena in a semiconductor with Rashba and Dresselhaus spin–orbit couplings (SOCs). Although it is driven by applying spin-independent potentials, the system can pump out spin-dependent currents, i.e., generate nonzero charge and spin currents at the same time. The SOC can modulate both the magnitude and the direction of currents, exhibiting an oscillating behavior. Moreover, it is shown that the spin current has different sensitivities to two types of the SOC. These results provide an alternative method to adjust pumped current and might be helpful for designing spin pumping devices.  相似文献   

6.
赵正印  王红玲  李明 《物理学报》2016,65(9):97101-097101
正如人们所知, 可以通过电场或者设计非对称的半导体异质结构来调控体系的结构反演不对称性(SIA)和Rashba自旋劈裂. 本文研究了Al0.6Ga0.4N/GaN/Al0.3Ga0.7N/Al0.6Ga0.4N量子阱中第一子带的Rashba 系数和Rashba自旋劈裂随Al0.3Ga0.7N插入层(右阱)的厚度ws以及外加电场的变化关系, 其中GaN层(左阱)的厚度为40-ws Å. 发现随着ws的增加, 第一子带的Rashba系数和Rashba自旋劈裂首先增加, 然后在ws>20 Å 时它们迅速减小, 但是ws>30 Å时Rashba自旋劈裂减小得更快, 因为此时kf也迅速减小. 阱层对Rashba系数的贡献最大, 界面的贡献次之且随ws变化不是太明显, 垒层的贡献相对比较小. 然后, 我们假ws=20 Å, 发现外加电场可以很大程度上调制该体系的Rashba系数和Rashba自旋劈裂, 当外加电场的方向同极化电场方向相同(相反)时, 它们随着外加电场的增加而增加(减小). 当外加电场从-1.5×108 V·m-1到1.5×108 V· m-1变化时, Rashba系数随着外加电场的改变而近似线性变化, Rashba自旋劈裂先增加得很快, 然后近似线性增加, 最后缓慢增加. 研究结果表明可以通过改变GaN层和Al0.3Ga0.7N层的相对厚度以及外加电场来调节Al0.6Ga0.4N/GaN/Al0.3Ga0.7N/Al0.6Ga0.4N量子阱中的Rashba 系数和Rashba自旋劈裂, 这对于设计自旋电子学器件有些启示.  相似文献   

7.
Non-equilibrium spin accumulation in two-dimensional domain wall (DW) in the presence of external electric field and Rashba type spin-orbit coupling within the Boltzmann semi-classical model is investigated. Transport and relaxation of spin polarized current in the DW is governed by spin-flip rates which are determined by the Rashba interaction and magnetic impurities. Numerical results show that at low impurity densities and nonadiabatic transport regimes, the Rashba interaction significantly enhances spin polarization of conduction electrons inside the DW.  相似文献   

8.
Similar to the Landauer electric dipole created around an impurity by the electric current, a spin polarized cloud of electrons can be induced by the intrinsic spin Hall effect near a spin independent elastic scatterer. It is shown that in the ballistic range around the impurity, such a cloud appears in the case of Rashba spin-orbit interaction, even though the bulk spin Hall current is absent.  相似文献   

9.
We investigate theoretically the spin-polarized transport in one-dimensional waveguide structure with spatially-periodic electronic and magnetic fields. The interplay of the spin-orbit interaction and in-plane magnetic field significantly modifies the spin-dependent transmission and the spin polarization. The in-plane magnetic fields increase the strength of the Rashba spin-orbit coupling effect for the electric fields along y axis and decrease this effect for reversing the electric fields, even counteract the Rashba spin-orbit coupling effect. It is very interesting to find that we may deduce the strength of the Rashba effect through this phenomenon.  相似文献   

10.
Motivated by the recent discovery of a strongly spin–orbit-coupled two-dimensional (2D) electron gas near the surface of Rashba semiconductors BiTeX (X= Cl, Br, I), we calculate the thermoelectric responses of spin polarization in a 2D Rashba model. By self-consistently determining the energyand band-dependent transport time, we present an exact solution of the linearized Boltzmann equation for elastic scattering. Using this solution, we find a non-Edelstein electric-field-induced spin polarization that is linear in the Fermi energy EF when EF lies below the band crossing point. The spin polarization efficiency, which is the electric-field-induced spin polarization divided by the driven electric current, increases for smaller EF .We show that, as a function of EF, the temperaturegradient-induced spin polarization increases continuously to a saturation value when EF decreases below the band crossing point. As the temperature tends to zero, the temperature-gradient-induced spin polarization vanishes.  相似文献   

11.
彭菊  郁华玲  左芬 《中国物理 B》2010,19(12):127402-127402
We theoretically studied the nonlocal Andreev reflection with Rashba spin-orbital interaction in a triple-quantumdot(QD) ring,which is introduced as Rashba spin-orbital interaction to act locally on one component quantum dot.It is found that the electronic current and spin current are sensitive to the systematic parameters.The interdot spin-flip term does not play a leading role in causing electronic and spin currents.Otherwise the spin precessing term leads to shift of the peaks of the the spin-up and spin-down electronic currents in different directions and results in the spin current.Moreover,the spin-orbital interaction suppresses the nonlocal Andreev reflection,so we cannot obtain the pure spin current.  相似文献   

12.
We propose in theory a curved nanowire structure that can both serve as a spin inverter and a spin polarizer driven by a periodic Rashba spin–orbit coupling (SOC) and a uniform Dresselhaus SOC. The curved section of the U-shaped quasi-one dimensional nanowire with an arc of radius R and circumferential length πR is divided into segments of equal length initially having only its inherent homogeneous Dresselhaus SOC. Then a Rashba-type SOC is applied at every alternating segment. By tuning the Rashba SOC strength and the incident electron energy, this device can flip the spin at the output of an incoming spin-polarized electron. On the other hand, this same device acts as a spin filter for an unpolarized input for which an outgoing electron with a non-zero polarization can be achieved without the application of an external magnetic field. Moreover, the potential modulation caused by the periodic Rashba SOC enables this device to function as an attenuator for a certain range of incident electron energies that can make the probability current density drop to 10−4 of its otherwise magnitude in other regimes.  相似文献   

13.
常凯  杨文 《物理学进展》2011,28(3):236-262
本文主要评述和介绍半导体微结构中自旋轨道耦合的研究和最近的研究进展。我们细致地讨论了半导体微结构中自旋轨道耦合的物理起源和窄带隙半导体量子阱中的自旋霍尔效应。我们发现目前国际上广泛采用的线性Rashba模型在较大的电子平面波矢处失效:即自旋轨道耦合导致的能带自旋劈裂不再随电子波矢的增加而增加,而是开始下降,即出现强烈的非线性行为。这种非线性的行为起源于导带和价带间耦合的减弱。这种非线性行为还会导致电子的D’yakonov-Perel’自旋弛豫速率在较高能量处下降,与线性模型的结果完全相反。在此基础上,我们构造统一描述电子和空穴自旋霍尔效应的理论框架。我们的方法可以非微扰地计入自旋轨道耦合对本征自旋霍尔效应的影响。我们将此方法应用于强自旋轨道耦合的情形,即窄带隙CdHgTe/CdTe半导体量子阱。我们发现调节外电场或量子阱的阱宽可以作为导致量子相变和本征自旋霍尔效应的开关。我们的工作可能会为区别和实验验证本征自旋霍尔效应提供物理基础。  相似文献   

14.
By the method of finite difference, the anisotropic spin splitting of the AlxGa1-xAs/GaAs/Aly Ga1-yAs/AlxGal-xAs step quantum wells (QWs) are theoretically investigated considering the interplay of the bulk inversion asymmetry and structure inversion asymmetry induced by step quantum well structure and external electric field. We demonstrate that the anisotropy of the total spin splitting can be controlled by the shape of the QWs and the external electric field. The interface related Rashba effect plays an important effect on the anisotropic spin splitting by influencing the magnitude of the spin splitting and the direction of electron spin. The Rashba spin splitting presents in the step quantum wells due to the interface related Rashba effect even without external electric field or magnetic field.  相似文献   

15.
HAO Ya-Fei 《理论物理通讯》2012,57(6):1071-1075
We theoretically investigate the spin splitting in four undoped asymmetric quantum wells in the absence of external electric field and magnetic field. The quantum well geometry dependence of spin splitting is studied with the Rashba and the Dresselhaus spin-orbit coupling included. The results show that the structure of quantum well plays an important role in spin splitting. The Rashba and the Dresselhaus spin splitting in four asymmetric quantum wells are quite different. The origin of the distinction is discussed in this work.  相似文献   

16.
汪萨克  汪军  刘军丰 《中国物理 B》2016,25(7):77305-077305
We study the possible topological phase in a one-dimensional(1D) quantum wire with an oscillating Rashba spin–orbital coupling in real space. It is shown that there are a pair of particle–hole symmetric gaps forming in the bulk energy band and fractional boundary states residing in the gap when the system has an inversion symmetry. These states are topologically nontrivial and can be characterized by a quantized Berry phase ±π or nonzero Chern number through dimensional extension. When the Rashba spin–orbital coupling varies slowly with time, the system can pump out 2 charges in a pumping cycle because of the spin flip effect. This quantized pumping is protected by topology and is robust against moderate disorders as long as the disorder strength does not exceed the opened energy gap.  相似文献   

17.
We consider a new effect induced by spin–orbit coupling in a two-dimensional electron gas confined in a semiconductor quantum well, i.e. the possibility of spin current generation by fluctuating random Rashba spin–orbit interaction, with the corresponding mean value of the interaction being equal to zero. Our main results suggest that – in contrast to the spatially uniform Rashba spin–orbit interaction – the spin Hall effect does not vanish for typical disorder strengths. We also point out some other possibilities of using such a random Rashba coupling for the generation of spin density and spin current in two-dimensional nonmagnetic structures.  相似文献   

18.
We study shot noise for spin-polarized currents and entangled electron pairs in a four-probe (beam-splitter) geometry with a local Rashba spin-orbit (s-o) interaction in the incoming leads. Within the scattering formalism we find that shot noise exhibits Rashba-induced oscillations with continuous bunching and antibunching. We show that entangled states and triplet states can be identified via their Rashba phase in noise measurements. For two-channel leads, we find an additional spin rotation due to s-o induced interband coupling which enhances spin control. We show that the s-o interaction deter-mines the Fano factor, which provides a direct way to measure the Rashba coupling constant via noise.  相似文献   

19.
We use the effective bond orbital model method to examine the spin splitting due to the Rashba effect in AlSb/InAs/GaSb asymmetric heterostructures. We find for the resulting two-dimensional electron gas (2DEG) under study that large theoretical values of the Bychkov–Rashba coefficients in the range of 30 × 10 − 10to 50 × 10 − 10eV · cm can be achieved. Finally, we present a phenomenon that might lead to a direct observation of the Rashba effect. We derive an expression, valid in the diffusive limit, for the spin polarization of the current resulting from a bias parallel to the plane of the quantum well.  相似文献   

20.
By means of the Keldysh Green's function method, we investigate the spin-polarized electron transport in a three-terminal device, which is composed of three normal metal leads and two serially-coupled quantum dots (QDs). The Rashba spin-orbit interaction (RSOI) is also considered in one of the QDs. We show that the spin-polarized charge current with arbitrary spin polarization can be obtained because of the quantum spin interference effect arising from the Rashba spin precession phase, and it can be modulated by the system parameters such as the applied external voltages, the RSOI strength, the QD levels, as well as the dot-lead coupling strengths. Moreover, a fully spin-polarized current or a pure spin current without any accompanying charge current can also be controlled to flow in the system. Our findings indicate that the proposed model can serve as an all-electrical spin device in spintronics field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号