首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The copper-based catalysts have been generally regarded as high-performance catalysts for CO_2 hydrogenation toward methanol,while the production of ethanol via C–C coupling on the copper-based catalysts is still challenging. Herein, we report a new catalyst where Cu nanoparticles are embedded in the carbon support with abundant defect sites, achieving a high selectivity for ethanol in the CO_2 hydrogenation. The experiments coupled with the theoretical studies show a clear map where carbon defects serve as anchor sites that can stabilize interfacial copper species, and interfacial Cu sites with low coordination numbers can adsorb two C_1 species and later convert them to a C_2 species via a hydrogenation-induced coupling reaction. Further adjacent Cu atoms of interfacial Cu sites can facilitate OH reduction reactions via the Cu–Cu bridge adsorption to assist the formation of ethanol. Especially, those specific active sites easily disappear in the reducing conditions and during the reaction, the major product can transform from ethanol to methanol.  相似文献   

2.
The reaction mechanisms of phenol with formaldehyde in the first and second addition at the ortho- and para-position in acid solution were theoretically investigated at the PW91/DNP level with solvent effects included. The reaction of phenol with protonated methanediol firstly forms an adduct intermediate, via a SN2 mechanism with a water molecule as the leaving group. From the adduct intermediate, there are two reaction channels involving a proton transfer to form the addition products. One is that a proton directly transfers via a four-membered ring transition state with a notable energy barrier (Four-member mechanism). Another mechanism involving a water molecule as catalyst to mediate the proton transfer (WCP mechanism), is a barrierless process, indicating that the formation of the adduct intermediate, the first reaction step, is rate-limiting. The reaction products are free hydroxymethyl phenols and/or hydroxybenzy carbocation (HOC6H4CH2+) which plays an important role in the following formation of methylene and methylene ether linkages. The second addition reactions between formaldehyde and hydroxymethyl phenol at all possible reaction sites of the phenol ring in acid solution were also investigated and discussed.  相似文献   

3.
It is proposed in this paper that there are two cireular regions of a typhoon where unstable spiral waves can occur. Furthermore, the instability mechanism is different in each region. The locations of these regions coincide with the inner and outer spiral rain bands respectively. Analysis indicates that in the inner unstable region, some eigenwaves are reflected by the strong nonuniformity of the typhoon's basic flow and a"quantum condition" is established correspondingly, which gives the eigenfrequency and growth rate. The estimated growth rate, spiral arm number, wave length, polarization and thermal structure for the proferentially growing eigenwaves are comparable with the observations of inner spiral Cb cloud bands.  相似文献   

4.
The reaction mechanisms of carcinogenic methylating agent iodomethane (MeI) with keto and enol tautomers of thymine (K- and E-thymine) were studied by using the B3LYP/6-311+G (d, p) method in water phase. The solvent effects were examined using the polarizable continuum model (PCM). Specifically, PCM single-point calculations at the same level of theory were performed in acetone and CCl4 that represent a range in nonpolarity. The calculated results show that the reaction of K-thymine with MeI is a two-step mechanism, whereas that of E-thymine is a one-step mechanism. Our calculations reveal that K-thymine is appreciably more stable than the enol form in the water phase or in the two solvents. The K- and E-form reaction barriers are 135.6 and 222.1 kJ/mol, respectively in water phase. These findings indicate that the reactions mentioned above could not occur efficiently in biological media in the absence of catalyst. Our conclusions are in agreement with the previous studies on the reactions of guanine with methyl chloride and methyl bromide.  相似文献   

5.
Plasma membrane preparations of rat corpora lutea have been incubated with [~3H]tyrosine. [~3H]-tyrosine binding sites are demonstrated and Scatchard analysis shows that there exist two types of binding sites, one with high affinity and low capacity, the other with low affinity and high capacity. The kinetics studies demonstrate that the [~3H]tyrosine binding to the two types of binding sites is reversible and the speed of binding to the high affinity type is faster than that to the low affinity type. The analysis of the chemical structure of tyrosine analogues and related compounds with respect to the specificity of the binding sites reveal that both types of binding sites show specificity, but the specificity of the high affinity sites is higher than that of the low affinity sites. The relations of tyrosine structure to binding processing and to tyrosine inhibitory action on hCG-induced progesterone production are discussed. It is suggested that the high affinity binding sites might be regarded as "ty  相似文献   

6.
The mechanism of reaction CI2+2HBr=2HCI+Br2 has been carefully investigated with density functional theory (DFT) at B3LYP/6-311G** level. A series of three-centred and four-centred transition states have been obtained. The activation energy (138.96 and 147.24 kJ/mol, respectively) of two bimolecular elementary reactions CI2+HBr→HCI+BrCI and BrCI+HBr→HCI+Br2 is smaller than the dissociation energy of CI2, HBr and BrCI, indicating that it is favorable for the title reaction occurring in the bimolecular form. The reaction has been applied to the chemical engineering process of recycling Br2 from HBr. Gaseous CI2 directly reacts with HBr gas, which produces gaseous mixtures containing Br2, and liquid Br2 and HCI are obtained by cooling the mixtures and further separated by absorption with CCI4. The recovery percentage of Br2 is more than 96%, and the CI2 remaining in liquid Br2 is less than 3.0%. The paper provides a good example of solving the difficult problem in chemical engineering with basic theory.  相似文献   

7.
The surface characteristics and catalytic activity of Sb_xO_Y/ SiO_2 catalysts forvapor-phasc synthesis of isoprene from isobutylene and formaldehyde have been investi-gated by TPR, XRD, XPS, IR and catalytic activity evaluation. The results show that whenthe Sb loadings are less than about 5 wt%,Sb_xO_Y is compIctely dispersed on the surface ofsilica to form a surface compound with Sb(V)=O group and the catalysts have relativelyhigh catalytic activity; when the Sb loadings are more than 5 wt%, in addition to this surfacccompound, the crystalline α-Sb_2O_4 is formed on the support surface and causes rapid de-crease of catalytic activity. It is suggcsted that the catalytic activity of Sb_xO_Y /siO_2 catalystsresults from synetgistic catalysis of the surface compound Sb(V)=O as the basic sites andthe surface silanol Si-OH as the acidie sites. The mechanism of this synergistic catalysis forisoprene production is discussed.  相似文献   

8.
The structure of the monomeric insulin analogue des(B26—B30) insulin is presented.; A detailed comparison with the 2Zn insulin structures shows that while there are some large changes in the structure, the basic secondary structural units maintain their integrity. The DPI structure is broadly similar to molecule Ⅰ in the 2Zn structure, and in this respect is like other crystal forms of insulin. In addition to changes on the surface of the structure there are some subtle but extensive changes in the heart of the molecule. The molecules are closely packed in the crystal with many and varied contacts, including a complex network of protein-cadmium interactions and a considerable number of water mediated contacts. The molecular surface has an unusually large number of hydrophobic groups which tend to cluster in a thick band running around the protein. The crystal structure is well ordered, indeed the clarity of some side chains and the definition of the water molecules is superior to that found in the mor  相似文献   

9.
A mixed-valence dinuclear manganese complex, [MnⅡMnⅢL](ClO4)·1/2MeOH, where L is a macrocyclic ligand derived from the cyclocondensation of sodium 2,6-diformyl-4-methylphenolate with N,N-bis(2-aminoethyl)-2-hydroxybenzyl amine, was obtained and its structure was determined by X-ray diffraction. The orange crystal is a monoclinic system with space group P21/c and lattice parameters a=1.1617(4), b=1.4005(3), c=1.4641(3) nm, β=113.03(2)°, and Z=2. The crystal structure shows that each pendant-arm is bonded in a bidentate fashion to the adjacent metal atom and that both the arms are on the same side of the macrocycle. The two Mn atoms are bridged by two μ2-phenoxy oxygen atoms of the tetra-imine macrocycle, and each Mn atom, locating in a trigonal prismatic coordination environment(N3O3), is six-coordinated by the two imine nitrogen atoms, one tertiary nitrogen atom and a pendant phenol moiety apart from the two oxygen atoms.  相似文献   

10.
By incorporating (Bu4N)2[Cu(dmit)2] with the diamagnetic host complex (Bu4N)2[Pd (dmit)2], single crystal of (Bu4N)2[Cu/Pd(dmit)2] is obtained. Its ESR spectra of various orientations are recorded. The principal values of g and A tensors and their direction cosines are computed using a least-squares fitting procedure, and based on which the molecular orbital of unpaired electron in [Cu(dmit)2]2- is described. The essence of the two magnetically non-equivalent sites is also revealed.  相似文献   

11.
The structures and relative stabilities of the complexes between Cu2+ and uracil, 2-thiouracil, 4-thiouracil, and 2,4-dithiouracil were investigated by B3LYP/6-311+G(2df,2p)//B3LYP/6-31G* DFT calculations. In those systems in which both types of basic centers, that is, a carbonyl and a thiocarbonyl group, are present, association of Cu2+ with the oxygen atom is systematically favored, in contrast to what was found for the corresponding Cu+ complexes. This can be understood by considering that association of Cu2+ is immediately followed by oxidation of the base, which accumulates the negative charge at the oxygen atoms. Similarly, for 2,4-dithiouracil the most basic site for Cu+ attachment is the sulfur atom at the 4-position, while for association of Cu2+ it is sulfur at the 2-position. In contrast, differences between uracil-Cu+ and uracil-Cu2+ complexes are very small, and in both cases the oxygen atom at the 4-position is the most basic. Cu2+ binding energies are about 4 and 1.2 times larger than Cu+ binding energies and proton affinities, respectively. Uracil- and thiouracil-Cu2+ complexes are thermodynamically unstable but kinetically stable with respect to their dissociation into uracil*+ + Cu+ or thiouracil*+ + Cu+. The Cu2+ binding energies vary with the difference between the second ionization potential of the metal and the first ionization potential of the base. regardless of the reference acid (H+, Cu+, Cu2+) the basicity trend is 2,4-dithiouracil > 4-thiouracil > 2-thiouracil > uracil.  相似文献   

12.
The structures and relative stabilities of the complexes formed by uracil and its sulfur derivatives, namely, 2-thio-, 4-thio, and 2,4-dithio-uracil when interacting with Ca(2+) in the gas phase have been analyzed by means of density functional theory (DFT) calculations carried out at the B3LYP/6-311++G(3df,2p)//B3LYP/6-31+G(d,p) level. For uracil and 2,4-dithiouracil, where the two basic sites are the same, Ca(2+) attachment to the heteroatom at position 4 is preferred. However, for the systems where both types of basic centers, a carbonyl or a thiocarbonyl group, are present, Ca(2+)-oxygen association is favored. The most stable complexes correspond to structures with Ca(2+) bridging between the heteroatom at position 2 of the 4-enol (or the 4-enethiol) tautomer and the dehydrogenated ring nitrogen, N3. The enhanced stability of these enolic forms is two-fold, on the one hand Ca(2+) interacts with two basic sites and on the other triggers a significant aromatization of the ring. Besides, Ca(2+) association has a clear catalytic effect on the tautomerization processes which connect the oxo-thione forms with the enol-enethiol tautomers. Hence, although the enol-enethiol tautomers of uracil and its thio derivatives should not be observed in the gas phase, the corresponding Ca(2+) complexes are the most stable species and should be accessible, because the tautomerization barriers are smaller than the Ca(2+) binding energies.  相似文献   

13.
The influences of thioketo substitution on the properties of uracil monomer and dimer and their interactions with Zn2+ have been systematically investigated at the B3LYP/6-311+G*level of theory. Those properties include the structural characteristics, acidities, ionization potentials, and singlet–triplet energy gaps of SU monomers and their dimers, where SU=2-thiouracil, 4-thiouracil, and 2,4-dithiouracil, respectively. Computational results suggest that thioketo substitution leads to an increase in the acidities of the N-H groups for both uracil and its dimer, where the N1–H group is still the most acidic site relative to that of N3–H group. However, the opposite behaviors are true for the ionization potentials and the singlet–triplet energy gaps of uracil monomer and its dimer, suggesting that thiouracils are more susceptible to radiation damage relative to the unsubstituted uracil. For uracil and 2-thiouracil, the corresponding triplet excited-state geometries are predicted to be highly nonplanar compared with the planar geometries of the ground state as well as 4-thiouracil and 2,4-dithiouracil upon triplet excitation. As a rule, the intermolecular H-bonds involving the sulfur atom directly have been influenced more significant than those the oxygen atom directly involved for U::U and SU::SU base pairs upon ionization and excitation. Additionally, Zn2+ binding is expected to lead to an increase in the stability of U::U and SU::SU base pairs.  相似文献   

14.
We report the photoelectron spectra of the negative ions of 4-thiouracil (4-TU)(-) and 2,4-dithiouracil (2,4-DTU)(-). Both of these spectra are indicative of valence anions, and they are each dominated by a single broad band with vertical detachment energies of 1.05 and 1.4 eV, respectively. Complementary calculations by Dolgounitcheva, Zakrzewski, and Ortiz (see companion paper) are in accord with our experimental results and conclude that the (4-TU)(-) and (2,4-DTU)(-) anions, reported herein, are valence anions of canonical 4-thiouracil and canonical dithiouracil. Comparisons among the anions and corresponding neutrals of 4-thiouracil, 2,4-dithiouracil, 5-chlorouracil, 5-fluorouracil, and uracil itself show that both sulfur and halogen modifications of uracil give rise to significant changes in the electronic structure. The electron affinities of the first four are all substantially larger than that of the canonical uracil.  相似文献   

15.
Electron affinities, vertical electron detachment energies, and isomerization energies of 4-thiouracil, 2-thiouracil, and 2,4-dithiouracil and their valence anions have been calculated with ab initio electron propagator and other many-body methods. Anions in which protons have been transferred to the C5 from the N1 or N3 ring positions have been considered, but the canonical forms are most stable for the 4-thiouracil and 2,4-dithiouracil anions. Electron affinities of 0.61, 0.26, and 0.87 eV have been determined for 4-thiouracil, 2-thiouracil, and 2,4-dithiouracil, respectively. Electron propagator calculations on the canonical anions yield vertical electron detachment energies that are in close agreement with experimental peaks at 1.05, 3.21, and 3.32 eV for 4-thiouracil and at 1.4 eV for 2,4-dithiouracil.  相似文献   

16.
Abstract— The phosphorescence of uracil, 2-thiouracil, 2 ,4-dithiouracil and 2-mercaptopyrimidine was studied at 77 K. 2-Thiouracil and 2,4-dithiouracil showed phosphorescence quantum yields of 0.65 and 0. 1 , respectively. The emitting triplet states of these compounds have been assigned as the 3(π, π*) type. The enhancement of spin-orbit coupling through the involvement of the 3d orbitals on sulfur has been invoked in describing emission characteristics of thiouracils.  相似文献   

17.
The deprotonation of Cu2+ complexes with uracil, 2-thiouracil, 4-thiouracil, and 2,4-dithiouracil has been investigated by means of B3LYP/ 6-311+G(2df,2p)//6-31G(d) calculations. The most stable [(uracil-H)Cu]+ and [(thiouracil-H)Cu]+ complexes correspond to bidentate structures in which Cu interacts with the deprotonated ring-nitrogen atom and with the oxygen or the sulfur atom of the adjacent carbonyl or thiocarbonyl group. For 2- and 4-thiouracil derivatives, the structures in which the metal cation interacts with the thiocarbonyl group are clearly favored with respect to those in which Cu interacts with the carbonyl group. This is at variance with what was found to be the most stable structure of the corresponding Cu2+ complexes, where association to the carbonyl oxygen was always preferred over the association to the thiocarbonyl group. The [(uracil-H)Cu]+ and [(thiouracil-H)Cu]+ complexes can be viewed as the result of Cu+ attachment to the uracil-H and thiouracil-H radicals formed by the deprotonation of the corresponding uracil+* and thiouracil+* radical cations. As a matter of fact their relative stability is dictated by the intrinsic stability of the corresponding uracil-H and thiouracil-H radical and by the fact that, in general, the N3-deprotonated site is a better electron donor than the N1. In all complexes, the bonding of Cu both to nitrogen and sulfur and to nitrogen and oxygen has a significantly large covalent character.  相似文献   

18.
Experimental and theoretical studies are carried out to determine the influence of thioketo substitution on the properties of uracil and its noncovalent interactions with alkali metal ions. Bond dissociation energies of alkali metal ion-thiouracil complexes, M(+)(SU), are determined using threshold collision-induced dissociation techniques in a guided ion beam mass spectrometer, where M(+) = Li(+), Na(+), and K(+) and SU = 2-thiouracil, 4-thiouracil, 2,4-dithiouracil, 5-methyl-2-thiouracil, and 6-methyl-2-thiouracil. Ab initio electronic structure calculations are performed to determine the structures and theoretical bond dissociation energies of these complexes and provide molecular constants necessary for thermodynamic analysis of the experimental data. Theoretical calculations are also performed to examine the influence of thioketo substitution on the acidities, proton affinities, and A::SU Watson-Crick base pairing energies. In general, thioketo substitution leads to an increase in both the proton affinity and the acidity of uracil. 2-Thio substitution generally results in an increase in the alkali metal ion binding affinities but has almost no affect on the stability of the A::SU base pair. In contrast, 4-thio substitution results in a decrease in the alkali metal ion binding affinities and a significant decrease in the stability of the A::SU base pair. In addition, alkali metal ion binding is expected to lead to an increase in the stability of both single-stranded and double-stranded nucleic acids by reducing the charge on the nucleic acid in a zwitterion effect as well as through additional noncovalent interactions between the alkali metal ion and the nucleobases.  相似文献   

19.
The structures and relative stabilities of the complexes formed by uracil and its thio- and seleno-derivatives with the Sr(2+) cation, in the gas phase, have been analyzed by means of G96LYP density functional theory (DFT) calculations. The attachment of the Sr(2+) cation to the heteroatom at position 4 is preferred systematically. Although the enolic forms of uracil and its derivatives should not be observed in the gas phase, the corresponding Sr(2+) complexes are the most stable. The enhanced stability of these tautomers is two-fold, on the one hand Sr(2+) interacts with two basic sites simultaneously, and on the other hand an aromatization of the six-membered ring takes place upon Sr(2+) association. Sr(2+) attachment also has a clear catalytic effect in the tautomerization processes involving uracil and its derivatives. This catalytic effect increases when oxygen is replaced by sulfur or selenium. The Sr(2+) binding energy with uracil and its derivatives is bigger than the tautomerization barriers connecting the dioxo forms with the corresponding enolic tautomers. Consequently, when associated with Sr(2+), all tautomers are energetically accessible and should all be observed in the gas phase.  相似文献   

20.
Photoinduced processes in thiouracil derivatives have lately attracted considerable attention due to their suitability for innovative biological and pharmacological applications. Here, sub-20 fs broadband transient absorption spectroscopy in the near-UV are combined with CASPT2/MM decay path calculations to unravel the excited-state decay channels of water solvated 2-thio and 2,4-dithiouracil. These molecules feature linear absorption spectra with overlapping ππ* bands, leading to parallel decay routes which we systematically track for the first time. The results reveal that different processes lead to the triplet states population, both directly from the ππ* absorbing state and via the intermediate nπ* dark state. Moreover, the 2,4-dithiouracil decay pathways is shown to be strongly correlated either to those of 2- or 4-thiouracil, depending on the sulfur atom on which the electronic transition localizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号