首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the full-potential local-orbital minimum-basis method within the framework of density functional theory, we study the electronic, magnetic and Fermi properties of three quaternary Heusler compounds: NiCoCrAl, NiCoCrGa and NiFeCrGa. Results identify that these compounds are half-metallic ferromagnets with integer spin magnetic moment, and their spin moments follow the Slater–Pauling rule. Accordingly, the origin of gap and magnetic moment are also discussed. In addition, the Fermi surface is further plotted to explore the behavior of electronic states in the vicinity of Fermi level for these compounds. Finally, we argue the influence of tetragonal deformation on electronic and magnetic properties. Meanwhile, the possible L21 disorder is also discussed for NiCoCrAl and NiCoCrGa.  相似文献   

2.
The electronic structure of the highly ordered alloy Cr3Co with the DO3 structure has been studied by FLAPW calculations. It is found that the ferrimagnetic state is stable and that the equilibrium lattice constant of Cr3Co equals 5.77 Å. A large peak in majority spin density of states (DOS) and an energy gap in minority spin DOS are observed at the Fermi level, which results in a high spin polarization of 90% in the ordered alloy Cr3Co. The total magnetic moment of Cr3Co is 3.12μB, which is close to the ideal value of 3μB derived from the Slater-Pauling curve. An antiparallel alignment between the moments on the Cr (A, C) sites and the Cr (B) sites is observed. Finally, the effect of lattice distortion on the electronic structure and on magnetic properties of Cr3Co compound is studied. A spin polarization higher than 80% can be obtained between 5.55 and 5.90 Å. With increasing lattice constant, the magnetic moments on the (A, C) sites increase and the moments on the (B, D) sites decrease. They compensate each other and make the total magnetic moment change only slightly.  相似文献   

3.
In this study, we present the electronic, magnetic, and structural properties of two novel half-metallic full-Heusler compounds, Co2CrAs and Co2CrSb, in cubic L21 geometry. The calculations are based on the density functional theory within plane-wave pseudopotential method and spin-polarized generalized gradient approximation of the exchange-correlation functional. The electronic band structures and density of states of the systems indicate half-metallic behavior with vanishing electronic density of states of minority spins at Fermi level, which yields perfect spin polarization. The calculated magnetic moments of both systems in L21 structure are 5.00 μB, which are largely localized on the chromium site. The energy gaps in minority spin states are restricted by the 3d-states of cobalt atoms on two different sublattices. The formation enthalpies for both structures are negative indicating stability of these systems against decomposition into stable solid compounds.  相似文献   

4.
Electronic structures of the Co2FeAl(0 0 1) surface are studied theoretically via first-principles calculations based on density functional theory. It is found that the minority spin band gap at the Fermi level in bulk Co2FeAl disappears at the surface due to space localization of the states. However, beneath the surface, the density of states of individual atoms shows a trend of minority spin gap opening at the Fermi level, which indicates that the electronic structures become close to that of bulk Co2FeAl. The termination of FeAl is more favorable for spin polarization of Co2FeAl films than that of Co. Accordingly, we present a composite tri-layer model to illustrate the fading of the half-metallic property in Co2FeAl films against the ideal character in bulk materials.  相似文献   

5.
The electronic structure and magnetic properties of ScPd3 have been studied based on the density functional theory within the local-density approximation. In the band structure of ScPd3, Sc 3d and Pd 4d states play dominant roles near the Fermi level. The fixed spin moment calculation indicates that ScPd3 has a stable paramagnetic (non-magnetic) state.  相似文献   

6.
We investigate the electronic structures and magnetic properties of Mn2ZnMg compound with Hg2CuTi-type structure using first-principles full-potential local orbital minimum basis calculations. Based on the analysis on the electronic structures, it is demonstrated that the compound is half-metallic antiferromagnet and the compound is favorable to form Hg2CuTi-type structure instead of the conventional L21 one. The complicated hybridization among the p and d states dominates mainly the origin of the gap. The Fermi level (EF) shifts slightly with the lattice parameter changed. Spin-orbit coupling hardly reduces the degree of spin polarization of the density of states at the Fermi level.  相似文献   

7.
We present a new supersymmetric approach to the Kondo lattice model in order to describe simultaneously the quasiparticle excitations and the low-energy magnetic fluctuations in heavy-Fermion systems. This approach mixes the fermionic and the bosonic representation of the spin following the standard rules of superalgebra. Our results show the formation of a bosonic band within the hybridization gap reflecting the spin collective modes. The density of states at the Fermi level is strongly renormalized while the Fermi surface sum rule includes n c + 1 states. The dynamical susceptibility is made of a Fermi liquid superimposed on a localized magnetism contribution.  相似文献   

8.
Using the electron density functional theory, the electronic structure and magnetic properties of possible contacts on the (001) interface between XYZ and X 2 YZ Heusler alloys (NiMnSb, Co2 MnSi) and III–V semiconductors (InP, GaAs) are studied. It is demonstrated that, in both cases, the high degree of spin polarization is achieved in Ni/P(As) or Co/As contacts. The influence of structure defects located on the surface and interfaces on the spin polarization at the Fermi level is studied. The nature of surface states at the Heusler alloy-semiconductor interface and electron factors that favor preservation or loss of the half-metallic behavior in the contacts are analyzed. Calculations of the local magnetic moments show that the magnetic properties of atoms in the contact are not changed significantly at the interface because of the partial compensation of their coordination by atoms of the semiconductor. The spin polarization can be increased by doping of the X element sublattice.  相似文献   

9.
We present an XPS and UPS study of crystalline Co, Co3B and Co78P14B8 glassy metal. For Co3B the electronic distribution curves (EDC) of the valence band and the previous specific heat and magnetic results are interpreted in a qualitative model where : i) the s-p cobalt-boron bonding states lie in the low part of the band, the upper levels being mainly cobalt d states and ii) a large density of states of the majority spin band is present at the Fermi level. For amorphous Co78P14B8 the EDC shows that EF is located in a high density of states region, it is suggested that the phosphorus p states ae centred at 7.5 eV. The photoemission and the magnetic results can be also interpreted in the framework of the previous model.  相似文献   

10.
The electronic structures and magnetism of the half-Heusler alloys XCrAl (X=Fe, Co, Ni) and NiCrZ (Z=Al, Ga, In) have been investigated to search for new candidate half-metallic materials. Here, we predict that NiCrAl, and NiCrGa and NiCrIn are possible half-metals with an energy gap in the minority spin and a completely spin polarization at the Fermi level. The energy gap can be attributed to the covalent hybridization between the d states of the Ni and Cr atoms, which leads to the formation of bonding and antibonding peaks with a gap in between them. Their total magnetic moments are 1μB per unit cell; agree with the Slater-Pauling rule. The partial moment of Cr is largest in NiCrZ alloys and moments of Ni and Al are in antiferromagnetic alignment with Cr. Meanwhile, it is also found that FeCrAl is a normal ferromagnetic metal with a magnetic moment of 0.25μB per unit cell and CoCrAl is a semi-metal and non-magnetic.  相似文献   

11.
The effect of doping with Cr on the electronic structure and magnetism of Co3Al has been studied by density functional calculations. It has been found that the Cr atom has a strong site preference for the B-site in Co3Al. With the substitution of Cr for Co, the total densities of states (DOS) change obviously: A DOS peak appears at EF in the majority spin states and an energy gap is opened in the minority spin states. The effect of Cr in Co3Al is mainly to push the antibonding peak of the Co (A,C) atoms high on the energy scale and to form the energy gap around EF, and also to contribute to the large DOS peak at EF in the majority spin direction. The calculations indicate a ferromagnetic alignment between the Co and Cr spin moments. The calculated total magnetic moment decreases and becomes closer to the Slater–Pauling curve with increasing Cr content. This is mainly due to the decrease of the Co (A,C) spin moments. At the same time, the moments of Co (B) and Cr (B) only change slightly.  相似文献   

12.
The ab-initio calculations based on the Korringa Kohn Rostoker approximation approach combined with coherent potential approximation (KKR-CPA), were used to study the magnetic properties of the titanium anti-site (TiO) and chromium (Cr) doped TiO2. In the considered systems, we used different concentrations for TiO defect and Cr doping. In TiO2(0.98)(TiO)0.02, the obtained results indicate that TiO is a donor having half-metal behavior. TiO[3d] band is located at the Fermi level, although isn’t 100% polarized, the ferromagnetic (FM) state is verified as being more stable than disordered local moment (DLM) state. For Ti0.98Cr0.02O2 the Cr doping introduced new states which give the material half-metallic feature. The majority spin of Cr impurities are located at the Fermi level and the conduction electrons around the Fermi level are 100% spin polarized. This indicates the stability of (FM) state. Moreover, in Ti0.98Cr0.02O2(0.98)(TiO)0.02, the top of the valence band is shifted to lower energy compared to pure TiO2, and the n-type of TiO2 is verified. The majority spin of Cr[3d] are located at 0.025 Ry close to the Fermi level. The predicted Curie temperatures (Tc) were calculated using the mean field approximation (MFA) and we predicted that TiO defect in Cr doped TiO2 makes Tc higher. This kind of defect makes the material useful for spinotronics's applications and devices.  相似文献   

13.
In this study, first principles calculation results of the half-metallic ferromagnetic Heusler compound Co2MnSi are presented. All calculations are based on the spin-polarized generalized gradient approximation (σ-GGA) of the density functional theory and ultrasoft pseudopotentials with plane wave basis. Electronic structure of related compound in cubic L21 structure is investigated up to 95 GPa uniform hydrostatic pressure. The half-metal to metal transition was observed around ~70 GPa together with downward shift of the conduction band minimum (CBM) and a linear increase of direct band gap of minority spins at Γ-point with increasing pressure. The electronic density of states of minority spins at Fermi level, which are mainly due to the cobalt atoms, become remarkable with increasing pressure resulting a sharp decrease in spin polarization ratio. It can be stated that the pressure affects minority spin states rather than that of majority spins and lead to a slight reconstruction of minority spin states which lie below the Fermi level. In particular, energy band gap of minority spin states in equilibrium structure is obviously not destroyed, but the Fermi level is shifted outside the gap.  相似文献   

14.
张富春  张威虎  董军堂  张志勇 《物理学报》2011,60(12):127503-127503
采用自旋极化密度泛函理论系统研究了Cr掺杂ZnO纳米线的电学、磁学以及光学属性.计算结果显示,Cr原子沿[0001]方向替代ZnO纳米线中的Zn原子时体系一般呈现铁磁耦合,沿[1010]和[0110]方向替代Zn原子时体系呈现反铁磁耦合,且磁性耦合状态在费米能级附近出现了明显的自旋劈裂现象,发生了强烈的Cr 3d和O 2p杂化效应.自旋态密度计算结果显示,磁矩主要来源于Cr原子未成对3d态电子的贡献,磁矩的大小与Cr原子的电子排布有关.光学性质计算结果显示,Cr掺杂ZnO纳米线在远紫外和近紫外都具有明显的吸收峰,吸收峰发生了明显的红移.这些结果都表明Cr掺杂ZnO纳米线也许是一种很有前途的稀磁半导体材料. 关键词: ZnO 纳米线 第一性原理 磁性  相似文献   

15.
The Heusler compound Mn3Si, the antiferromagnet in the Mn-based class of Heuslers which contains several conventional and half-metallic ferromagnet, shows a peculiar stability of its magnetic order in high magnetic fields. We investigated the electronic and magnetic properties of Mn3Si by band structure calculations based on the density functional theory. The minority bands of Mn3Si in the spin polarized state are gapped at the Fermi level, which shows a half-metallic behavior of Mn3Si.  相似文献   

16.
The impacts of pressure on the structural and electronic properties of CeIn3 have been calculated. The calculations are performed in the presence and the absence of spin-orbit interaction as well as GGA+U using density functional theory within the PBE-GGA approximation. It is shown that energy and density of states analyses are considerably influenced by the spin-orbit interaction. The spin and orbital magnetic moments of Ce are calculated under pressure up to 22 GPa. An almost linear relation is observed between the magnetic moment and the density of states of Ce-4f at Fermi level. At ambient pressure, a good agreement between the values of the electric field gradients, EFG, and bulk modulus with experimental results is observed. The strongest anisotropy in charge distribution originates from In-5p orbital, which has the main contribution to EFG.  相似文献   

17.
谭明秋  陶向明  何军辉 《物理学报》2001,50(11):2203-2207
用自洽的全势能线性丸盒轨道能带方法计算了氧化物体系SrRuO3(SRO)的电子结构和磁性.对于理想的立方钙钛矿结构的计算得出的电子结构明显改善了已有的计算结果:每个元胞的磁矩为129μB,按原子球划分为084μB/Ru原子和011μB/O原子;Sr原子上的自旋磁矩几乎为零;费米能级处的态密度N(EF)为435(states/Ryd/f.u.).关于实际的正交结构SRO,计算得出磁矩为108μ关键词: 过渡金属氧化物 电子结构 磁性  相似文献   

18.
刘先锋  韩玖荣  江学范 《物理学报》2010,59(9):6487-6493
基于密度泛函理论的广义梯度近似(GGA)和投影缀加波(PAW)方法,分别从共线和非共线磁性结构出发,研究了自旋阻挫三角反铁磁AgCrO2的基态、磁性以及电子结构,从理论计算的角度给出了基态磁性结构.计算结果表明:AgCrO2具有120°螺旋自旋序反铁磁基态,其自旋螺旋面平行于(110)面或(11-0)面;由于Cr离子间的自旋几何阻挫,导致沿晶体的a,ba+b方向上均形成了螺旋自旋转动角为120°的 关键词: 第一性原理 交换相互作用 阻挫 反铁磁  相似文献   

19.
We systematically study the structural, electronic, and magnetic properties of chromium sulfide Y2CrS4 by using density-functional theory. We find that antiferromagnetic order is more energetically favorable than ferromagnetic state and near the Fermi level the main occupation is from Cr 3d states.  相似文献   

20.
Using a state-of-the-art full-potential electronic structure method within the generalized gradient approximation (GGA), we study the electronic structure and magnetic properties of the Mn2CuSi full-Heusler alloy. Calculations show that CuHg2Ti-type structure alloy is a half-metallic ferrimagnet with the Fermi level (εF) being located within a tiny gap of the minority-spin density of states. The conduction electron at εF keeps a 100% spin polarization. A total spin moment, which is mainly due to the antiparallel configurations of the Mn partial moments, is −1.00μB for a wide range of equilibrium lattice parameters. Simultaneously, the small spin magnetic moments of Cu and Si atoms are antiparallel. The gap mainly originates from the hybridization of the d states of the two Mn atoms. Thus, Mn2CuSi may be the compound of choice for further experimental investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号