首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The article presents the findings of microscopic and electrochemical studies of electrooxidation of bismuth particle of varying sizes. Bismuth particles were immobilized on the surface of indifferent carbon containing screen-printed electrodes. The calculations and experimental studies demonstrated that the transition from macroparticles to nanoparticles caused a shift of the maximum current potential of bismuth oxidation into the area with more negative potentials. A positive correlation between experimental and calculated data confirms once again a relevant application of the earlier proposed mathematical model and the possible use of the shift of the maximum current potential of electrooxidation to describe electrochemical activity and energy properties of metal nanoparticles.  相似文献   

2.
This article presents the findings of microscopic and electrochemical studies of electrooxidation of silver nanoparticles of varying sizes in comparison with “bulk” silver. Silver particles were immobilized on the surface of indifferent carbon-containing screen-printed electrodes. Vacuum-deposited silver represented the “bulk” electrode. The calculations and experimental studies demonstrated that the transition from macro- to nanostructural electrodes is followed by a shift of the maximum current potential of metal oxidation into the area with more negative potentials. A positive correlation between experimental and calculated data confirms once again a relevant application of the earlier proposed mathematical model and the possible use of the shift of the maximum current potential of electrooxidation to describe the electrochemical activity and surface energy properties of metal nanoparticles.  相似文献   

3.
The article presents the findings of microscopic and electrochemical studies of size-dependent gold particles electrooxidation. Gold particles were immobilized on the surface of carbon-containing screen-printed electrodes. The experiment demonstrated that the transition from macroparticles to nanoparticles caused a shift of the maximum current potential of gold oxidation into the area with more negative potentials. A decrease in particle size resulted in an increase in the electrochemical activity of metal. A positive correlation between experimental and calculated curves confirms a mathematical model (2) and correctness of the calculations. Measured parameters of voltammograms, in particular, maximum current potential, can be used to describe the electrochemical activity and energy properties of nanoparticles.  相似文献   

4.
It is shown that nanoparticles localized on a foreign solid electrode may display two opposite shifts of dissolution potential, namely, a shift toward either more positive or more negative values as compared with the equilibrium potential of M n+/M 0 or the potential of bulk metal electrooxidation. The observed phenomena are interpreted in view of three energy states of substance, which are realized depending on contribution of the surface Gibbs free energy (ΔG°) to the energy of the system. Literature data concerning different metal-substrate pairs and specially conducted experimental investigations of electrooxidation of gold nanoparticles (radius equal to 10 and 150?nm), which are localized on the surface of glassy carbon, bulk gold, and platinum electrodes are presented and discussed. A shift of maximum current potential of small nanoparticles oxidation toward more positive values is observed in this series. The oxidation potential of large nanoparticles is not affected by the nature of the substrate. In all cases, electrooxidation of gold nanoparticles occurs at the more negative potentials than those of the bulk gold electrooxidation. It is shown that depending on the nature of the substrate and nanoparticle size, the dominating effect is either interaction of nanoparticles with the substrate (ΔG°?<?0) and electrochemical potential shifts toward positive values or impact of surface Gibbs free energy of nanoparticles (ΔG°?>?0) into energy of the system and electrochemical potential shifts toward negative values. The validity of the proposed assumptions is confirmed by good correlation of literature and our experimental data with calculated ones.  相似文献   

5.
The phase structure of palladium–bismuth binary electrolytic deposit was studied. The electrodeposition of deposit components on the surface of a graphite electrode (GE) was carried out in situ. On current–voltage curves, the peak of bismuth electrooxidation, the peak of palladium electrooxidation and an additional peak at 0.15 V vs. Ag/AgCl are observed. The peak current at 0.15 V depends both on the concentration of palladium(II) ions and on that of bismuth(III) ions. The thermodynamic theory of alloys in the approximation of the theory of regular solutions was used for calculations. The mixing heat of the binary alloy components and the equilibrium potential of bismuth in the bismuth–palladium alloy are calculated. The calculated equilibrium potential of bismuth in an alloy with palladium is 0.12 V vs. Ag/AgCl which corresponds to the Bi2Pd intermetallic compound (IMC). Investigation of the surface of a GE with a palladium–bismuth deposit with use of scanning electron microscope showed that the electrolytic deposit contains bismuth, palladium and the Bi2Pd IMC. Peak at the potential of plus 0.15 V vs. Ag/AgCl is due to selective bismuth electrooxidation from the Bi2Pd IMC.  相似文献   

6.
Pd architectures such as nanobars and nanoparticles were synthetized by the polyol method using di-ethylene glycol as reaction media. The morphology, composition and electrocatalytic properties were investigated by transmission electronmicroscopy (TEM), thermo-gravimetric analysis (TGA), X-ray diffraction (XRD) and electrochemical measurements. The electrocatalytic activity of Pd nanostructures was tested in terms of formic acid electrooxidation reaction (FAOR) in acid media (0.5 M H2SO4) and compared with commercial Pd/XC-72 (Pd/C). Results from the electrochemical studies showed that Pdnanobars (PdNB/C) presented higher tolerance to the CO and CO2 poisoning effect compared with Pd nanoparticles (PdNP/C) and commercial Pd/C. Furthermore, the onset potential toward formic acid electrooxidation at high concentration (1 M) on PdNB/C exhibited a negative shift ca. 100 mV compared with commercial Pd/C. Finally, PdNB/C in the presence of 1 M FA showed a lower poisoning degree compared with commercial Pd/C and PdNP/C.  相似文献   

7.
Electrocatalytic systems utilizing carbon (Vulcan)-supported PtRh nanoparticles (PtRh/Vulcan) admixed with either molybdenum oxide or tungsten oxide were tested and compared during electrooxidation of ethanol. The systems' performance was diagnosed using electrochemical techniques such as voltammetry and chronoamperometry. The proposed electrocatalytic materials were also characterized with X-ray diffraction (XRD), transmission and scanning electron microscopies (TEM and SEM), as well as SEM-coupled energy dispersive X-ray spectroscopy (SEM-EDX). For both systems containing molybdenum and tungsten oxides, enhancements in catalytic activities (relative to the behavior observed at bare PtRh/Vulcan nanoparticles) were found during ethanol electrooxidation at room temperature (22?°C). Further, it was from chronoamperometric current (density)–time responses that anodic electrocatalytic currents measured at 0.3?V (vs. RHE) were more than 20% higher in the case of the MoO3-containing PtRh/Vulcan system relative to that utilizing WO3. The diagnostic “CO-stripping” experiments were consistent with the view that addition of molybdenum oxide or tungsten oxide to PtRh/Vulcan tended to shift potential for the oxidation of inhibiting CO-adsorbate ca. 80 or 40?mV towards less negative values in comparison to the analogous but oxide-free system. The fact that carbon (Vulcan)-supported PtRu nanoparticles exhibited higher electrocatalytic reactivity observed phenomena may be attributed to specific interactions between noble metal centers and the oxides in addition to chemical reactivity of metal oxo groups in the vicinity of PtRh/Vulcan at the electrocatalytic interface.  相似文献   

8.
Nanowires composed of antimony, gold, and bismuth telluride (Bi2Te3) were reduced in diameter by electrooxidation in aqueous solutions. When electrooxidation was carried out using low current densities (Jox < 150 microA cm(-2)), the mean wire diameter decreased in direct proportion to the oxidation time, as expected for a kinetically controlled process. Under these conditions, the diameter uniformity of nanowires remained constant as wires were shrunk from initial diameters of more than 120 nm to less than 40 nm, for Sb and Bi2Te3, and less than 60 nm for Au. Oxidized nanowires remained continuous for more than 100 microm. Electrooxidation at higher current densities rapidly introduced breaks into these nanowires. Electrochemical wire growth and shrinking by electrooxidation were integrated into a single electrochemical experiment that allowed the final mean diameter of nanowires to be specified with a precision of 5-10 nm.  相似文献   

9.
Nano‐bismuth has excellent electrochemical properties. However, it is still unclear how the particle size of nano‐bismuth influences its electrochemical thermodynamic properties. In this paper, spherical bismuth nanoparticles with different particle sizes were prepared by solvothermal method; the electrode potentials, the temperature coefficients of the electrode potentials and the thermodynamic functions of reaction for nano‐bismuth electrodes with different particle sizes at different temperatures were determined; and the effects of particle size on the electrode potential, the temperature coefficient and the thermodynamic functions were discussed. The experimental results show that particle size of bismuth nanoparticles has a significant influences on the electrochemical thermodynamic properties. The standard electrode potential of the nano‐bismuth electrode with a diameter of 39.9 nm was 0.009 V lower than that of the ordinary standard electrode (0.308 V); the temperature coefficient of the electrode potential with a diameter of 39.9 nm was nearly double that of 85.9 nm. With the particle sizes decrease, the standard molar Gibbs energy of reaction, the standard molar enthalpy of reaction, the standard molar entropy of reaction, the molar reversible reaction heat and the temperature coefficient increase; and these quantities are linearly related to the reciprocal of the particle diameter.  相似文献   

10.
Spectra obtained by electrochemical infrared reflection absorption spectroscopy (EC-IRAS) for carbon monoxide (CO) adlayers formed by partial CO dosing on various ruthenium-decorated platinum nanoparticle films are reported. The need to achieve a well distributed rather than aggregated metal nanoparticle array is demonstrated, given that such nanoparticle aggregates induce complex dielectric behavior. The strategy here is to use an "organic glue matrix" (short chain SAMs) between the nanoparticles and the gold substrates. The observed promotion in CO electrooxidation by the existence of a Ru island on Pt nanoparticles, of interest to fuel-cell catalysis, showed a strong relationship with Ru surface concentrations, consistent with previous studies on single crystal or polycrystalline bimetallic surfaces. Two distinctive CO infrared bands, one for the Pt-CO and one for Ru-CO domain were found after the dipole coupling of CO within the two CO domains was minimized. Interestingly, those two CO bands showed independent electrooxidation behavior with electrode potential changes. Also, it is shown that the electrooxidation of CO on large Ru islands is less facile than on small Ru islands. In addition, the activity of commercial Pt/Ru alloy nanoparticles to CO stripping was tested and IRAS spectra were reported as a comparison to our Ru-decorated Pt nanoparticles.  相似文献   

11.
In this paper, we successfully synthesized Ni hollow spheres consisting of needle-like nickel particles by using silica spheres as template with gold nanoparticles seeding method. The Ni hollow spheres are applied to methanol and ethanol electrooxidation in alkaline media. The results show that the Ni hollow spheres give a very high activity for alcohol electrooxidation at a very low nickel loading of 0.10 mg cm−2. The current on Ni hollow spheres is much higher than that on Ni particles. The onset potential and peak potential on Ni hollow spheres are more negative than that on Ni particles for methanol and ethanol electrooxidation. The Ni hollow spheres may be of great potential in alcohol sensor and direct alcohol fuel cells.  相似文献   

12.
Fluorine tin oxide (FTO) and multi-walled carbon nanotube (MWCNT) composites synthesized by a sol-gel process followed by a hydrothermal treatment process have been explored as a support for Pt nanoparticles (Pt-FTO/MWCNTs). X-ray diffraction analysis and high resolution transmission electron microscopy show that the Pt and FTO nanoparticles with crystallite size of around 4-8 nm are highly dispersed on the surface of MWCNTs. Pt-FTO/MWCNT catalyst is evaluated in terms of the electrochemical catalytic activity for methanol electrooxidation using cyclic voltammetry, steady state polarization experiments, and electrochemical impedance spectroscopy technique in acidic medium. The Pt-FTO/MWCNT catalyst exhibits a higher intrinsic catalytic activity for methanol electrooxidation with high stability during potential cycling than Pt nanoparticles supported on tin dioxide/multi-walled carbon nanotube composites. The results suggest that FTO/MWCNT composites could be considered as an alternative support for Pt-based electrocatalysts in direct alcohol fuel cells.  相似文献   

13.
《Electroanalysis》2018,30(9):2167-2175
Here, we built Ru‐decorated Pt/C nanoparticles with different coverage degrees (θRu) by wall‐jet configuration for the first time, and we investigated their catalytic properties towards glycerol electrooxidation in acidic medium. Moreover, we used the most active catalysts as the anode in electrolysis to produce carbonyl compounds. The use of an electrochemical cell in wall‐jet configuration allows for the controlling of electrodeposition through easily handling parameters; namely, the θRu is controlled by changing the concentration of the metallic precursor, speed, and volume of injection onto a Pt/C‐modified glassy carbon electrode under applied potential. Excess of Ru on a Pt surface inhibits glycerol dissociative adsorption, which limits further electrooxidation; whereas low θRu do not provide surface oxygen species to the anodic reaction. Hence, intermediates θRu reveal active catalysts – namely, θRu=0.42 shifts the onset potential 170 mV towards lower values and increases 1.65‐fold the current density at 0.5 V. The stability of this catalyst is also enhanced by maintaining a more constant current density during successive potential cycles in the presence of glycerol and by avoiding Ru leaching from the surface. The electrolysis on Ru‐decorated Pt/C is shown to lead the reaction towards formic acid (‘high oxidation state’), decreasing the amounts of glyceradehyde, glycolic acid, and dihydroxyacetone, as a result of the improved catalytic properties.  相似文献   

14.
Pt nanocatalysts supported on glassy carbon (GC) were electrochemically deposited by cyclic voltammetry (CV) with different scanning potential ranges. The lower limit of potential was fixed at −0.25 V vs. saturated calomel electrode, whereas the upper limit of potential was adjusted to be 0.0, 0.20, 0.60, and 1.0 V. Scanning electron microscopy images showed that Pt microparticles are uniformly dispersed on the GC substrate and the agglomerated microparticles are composed of numerous nanoparticles. In addition, the catalytic capabilities of Pt/GCs for methanol electrooxidation were examined by CV, chronoamperometry, and electrochemical impedance spectroscopy in a solution of 0.5 M CH3OH and 0.5 M H2SO4. The results demonstrate that the catalytic activities and stabilities of Pt catalysts prepared by the potential ranges from −0.25 to both 0.60 and 1.0 V for methanol electrooxidation were higher than the others, which may be due to their higher electrochemical active surface area, lower charge transfer resistance, and more preferred Pt crystallographic orientation.  相似文献   

15.
Carbon-supported Pd nanoparticles were prepared by microwave heating-glycol reduction method, and characterized by a wide array of experimental techniques including X-ray diffraction spectroscopy(XRD) and transmission electron microscopy(TEM). The electrooxidation behaviors of ethanol on the Pd/C electrode in alkaline media were investigated using cyclic voltammetry(CV), chronoamperometry(CA), electrochemical impedance spectroscopy(EIS) and single cell performance methods. Pd/C electrode for ethanol oxidation showed high electro-catalytic activity and long term stability. However, it is observed that the current density decreases with the increasing of the potential and negative impedance presents in the potential from-0.1 to0.1 V. The decreasing current density and the negative impedance could be due to the adsorbed intermediates species that inhibited the further oxidation of ethanol. Based on the chemical reaction analysis and EIS spectra, equivalent circuits relating to various potential zones have been obtained. These results reveal the dynamic adsorption of intermediates species on Pd surfaces. Significantly, it is clarified that the adsorption behavior begins from the maximum catalysis of electro-catalysis and ends in the formation of the palladium(II) oxide layer on the electrode surface.  相似文献   

16.
A procedure is developed for the immobilization of bismuth nanoparticles prepared by the method of gas condensation on inert supports manufactured by the screen printing method using carbon-containing inks. The electrochemical behavior of the immobilized bismuth nanoparticles is investigated, and the conditions of their electrochemical activation are found. The composition of the modifying suspension “bismuth nanoparticles-liquid” is optimized. The elaborated thick-film carbon-containing electrode modified by bismuth nanoparticles is shown to be similar in its analytical parameters to the commercially available thick-film carbon-containing electrode premodified by calomel, and substantially exceeds carbon-containing electrodes with electrolytically deposited bismuth films in its properties. The limits of detection for heavy metals by stripping voltammetry are as follows (μg/L): 0.38 for Zn(II), 0.40 for Cd(II), and 0.55 for Pb(II) at the preconcentration time 180 s.  相似文献   

17.
《Electroanalysis》2006,18(11):1105-1113
We report for the first time the effective catalytic electrooxidation of nicotinamide adenine dinucleotide (NADH) on the pencil 8B‐scrawled gold electrode of an electrochemical quartz crystal microbalance (EQCM). The EQCM allowed us to quantitatively evaluate the catalytic activity of the pencil‐scrawled Au electrode. With increasing the mass of modified pencil powders, the peak potential for NADH oxidation shifted negatively, with maximum shift of ?0.35 V at saturated pencil modification; the NADH‐oxidation peak current density (jp) was also notably increased, and the jp at saturated pencil modification was found to be larger than those at conventional pencil 8B and bare Au electrodes. Sensitive amperometric detection of NADH was achieved at the gold electrode with saturated pencil modification, with low detection potential (0.4 V versus SCE), low detection limit (0.08 μmol L?1) and wide linear range (0.2–710 μmol L?1). The fluoroelectrochemical measurements of NADH at bare and pencil‐modified gold electrodes were also conducted with satisfactory results. The convenient and low‐cost modification of pencil powders on the Au electrode may have presented a new functional surface of the EQCM, which is recommended for wider applications to bioelectrochemical studies, especially in view of the EQCM's capability of providing abundant in situ information in relevant processes.  相似文献   

18.
Fuel cell performance largely relies on the activity of catalyst; hence development of high performance electrocatalysts for the electrooxidation of methanol is highly essential for the further development in fuel cell technology. Herein, we demonstrate a facile hydrothermal approach for the growth of NiCo2O4 nanorods and their application in the methanol electrooxidation. The morphology and surface area investigation reveal the growth of NiCo2O4 nanorods with an average length of 500 nm and a specific surface area of 123 m2/g, respectively. The NiCo2O4 nanorods displayed a larger electrochemical activity towards the electrooxidation of methanol in alkaline pH than the quasi-spherical NiCo2O4 nanoparticles. On the NiCo2O4 nanorod based electrode a higher catalytic current density of 129 mA/cm2 and a high stability with 86% current retention was achieved, signifying that the current non-Pt based catalyst could be a non-expensive alternative candidate for high performance fuel cell application.  相似文献   

19.
合成了金掺杂的四氧化三铁纳米粒子(Au-Fe3O4), 以壳聚糖为交联剂, 制备了电流型乙酰胆碱酯酶(AChE)生物传感器, 并将其应用于有机磷农药(OPs)的检测. 实验表明, Au-Fe3O4纳米粒子具有良好的生物兼容性, 能够有效地促进电子传递, 修饰了Au-Fe3O4纳米粒子的酶传感器, 响应速度快, 检测灵敏度高, 稳定性好; 固定在传感器上的乙酰胆碱酯酶有良好的酶动力学响应, 其表观米氏常数( )为10.3 mmol/L. 利用有机磷农药对乙酰胆碱酯酶的抑制作用, 以硫代乙酰胆碱(ATCh)为底物, 对有机磷农药敌敌畏进行了检测, 检测限达到4.0×10-13 mol/L.  相似文献   

20.
The electrooxidation of several fuel compounds was studied using metallic nanoparticles of Au, Pd, Pt, AuPd and AuPt synthesized by direct electrodeposition by applying a constant potential of ‐200 mV (vs. Ag/AgCl) to pencil graphite in an acidic medium. Scanning electron microscope (SEM) images and X‐ray diffraction (XRD) data show that monometallic (Au, Pd and Pt) and alloys of bimetallic nanoparticles of AuPd and AuPt have been formed. The catalytic performance of the prepared electrodes was investigated in a neutral medium (100 mM phosphate buffer, pH 7) by cyclic voltammetry. Amongst all fuels, the highest current densities were obtained by the electrooxidation of formic acid (ca. 9.8 mA cm?2) and formaldehyde (ca. 9.7 mA cm?2) on the AuPt catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号