首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

We present a new observation of electrochemical oscillation during the reduction of Co2+ from sulfate solution in the presence of but-2-yne-1,4-diol (butynediol) as an additive. Cyclic voltammetry, hydrodynamic voltammetry at galvanostatic condition, and electrochemical impedance spectroscopic studies suggest that the electrochemical oscillation observed was a relaxation type and was the manifestation of adsorbed hydrogen formation by electrochemical reduction of protons on cobalt and their chemical removal by semi-hydrogenation of butynediol to butenediol during the initial stages of electrodeposition.

Graphical abstract

  相似文献   

2.

Metals often are classified as “noble” or “base”—characterizing their reduction potential as one of the most important chemical properties. We show that metals are only as noble as allowed by their environment, i.e. this is a relative term, and the “frame of reference” simply is the solvent in which the redox system is present. We prove that silver is a prime example for a noble metal that forfeits its noble character in the simple ionic liquid HMIM Br (1-hexyl-3-methylimidazolium bromide) as an example for such a solvent.

Graphical Abstract

  相似文献   

3.

Commercial resin microbeads are widely applied in ion exchange and extraction. Here, a single anion-selective and phosphate binding resin microbead (FerrIX™) is mounted into an epoxy membrane and investigated by 4-electrode membrane voltammetry and membrane impedance spectroscopy. Anion transport properties are observed to dominate associated with three distinct potential domains: (I) a low bias ohmic potential domain (dominant at high electrolyte concentration), (II) a concentration polarisation potential domain, and (III) an over-limiting potential domain. Voltammetric responses show transient diffusion-migration features at higher scan rates and quasi-steady state features at lower scan rates. Inherent microbead conductivity is shown to be linked to two resistive elements, electrolyte concentration dependent and independent, in series. The effects of phosphate binding are revealed as transient pattern in impedance spectroscopy data. Preliminary data suggest phosphate concentration-dependent peak features in the imaginary impedance versus frequency plot due to phosphate binding into the microbead.

Graphical abstract
  相似文献   

4.

Hydrogen permeation through a pure palladium film (25 μm thickness, optically dense) is employed to trigger electron transfer (hydrogen-driven) reactions at the external palladium | aqueous electrolyte interface of a two-compartment electrochemical cell. Two systems are investigated to demonstrate feasibility for (i) indirect hydrogen-mediated silver electrodeposition with externally applied potential and (ii) indirect hydrogen-mediated silver electrodeposition driven by external formic acid decomposition. In both cases, porous metal deposits form as observed by optical and electron microscopies. Processes are self-limited as metal deposition blocks the palladium surface and thereby slows down further hydrogen permeation. The proposed methods could be employed for a wider range of metals, and they could provide an alternative (non-electrochemical or indirect) procedure for metal removal or metal recovery processes or for indirect metal sensing.

Graphical abstract

  相似文献   

5.

In this work, the electrochemical performance of Na-doped layered cathode material LiCoO2 for Li-ion batteries is studied using first-principles calculations. The results show that the doped Na ion acts as a pillar, which can greatly increase the diffusion rate of Li ions, but it is not conducive to improving cycle performance and delithiation potential. These research results provide a theoretical reference for the study of Li-ion batteries with high-rate performance. Due to the conflicting role of single element doping, the multi-element co-doping strategy will be the best way to develop high-performance Li-ion batteries.

Graphical abstract
  相似文献   

6.

It has recently been established that 1-octanethiol in the electrolyte can allow iron electrodes to be discharged at higher rates. However, the effect of thiol additives on the air electrode has not yet been studied. The effect of solvated thiols on the surface positive electrode reaction is of prime importance if these are to be used in an iron-air battery. This work shows that the air-electrode catalyst is poisoned by the presence of octanethiol, with the oxygen reduction overpotential at the air electrode increasing with time of exposure to the solution and increased 1-octanethiol concentration in the range 0–0.1 mol dm−3. Post-mortem XPS analyses were performed over the used air electrodes suggesting the adsorption of sulphur species over the catalyst surface, reducing its performance. Therefore, although sulphur-based additives may be suitable for nickel-iron batteries, they are not recommended for iron-air batteries except in concentrations well below 10 × 10−3 mol dm−3.

Graphical abstract

  相似文献   

7.

Anodic oxides were grown to 50 V on Ta in several organic ions containing anodizing baths. Their properties were compared with anodic Ta oxide film grown to the same formation voltage in 0.1 M NaOH. Anodizing process carried out in sodium citrate led to the growth of the anodic oxide with the best blocking properties whilst, when Ta is anodized in sodium adipate, a significant part of the circulated charge is wasted in side reactions, such as oxygen evolution. Photoelectrochemical measurements showed the presence of optical transitions at energy lower than the band gap for the anodic films grown in citrate and tartrate electrolytes, attributed to localized electronic states located close to the valence band mobility edge of the films generated by anions incorporation into the oxide. Differential capacitance measurements proved an increase by 17% in capacitance value for the oxide grown in citrate-containing solution with respect to that grown in NaOH electrolyte. A sketch of the energetic of the metal/oxide interface is provided.

Graphical abstract

  相似文献   

8.

Electrodeposition of metal adlayers on semiconductor metal chalcogenides (CdSe, CdS, PbTe, PbSe, PbS, Bi2Te3) is reviewed. Cathodic underpotential deposition of metal adlayer on metal chalcogenide is the electrochemically irreversible surface limited reaction. The irreversibility of the upd increases in the row from tellurides to selenides and further to sulfides. The underpotential shift on chalcogenide nanoparticles increases with particle size. Metal upd on chalcogenides is applied as a means of measurement of electroactive surface area of chalcogenide electrodes. The method is especially advantageous for multicomponent systems with other component not supporting upd, such as CdSe-TiO2, CdSe-ZnO. Differences of voltammetric profiles of Pb upd on Bi2Te3 and Te are applied for detection of Bi2Te3 surface contamination by elemental tellurium. The further tasks in the electrochemistry of metal adlayers are their incorporation as interlayers in layered chalcogenides and electrodeposition of superlattices.

Graphical abstract

  相似文献   

9.
Chen  Fangchun  Liu  Hongjia  Xu  Mengting  Ye  Jiapeng  Li  Zhi  Qin  Lizhao  Zhang  Tonghua 《Cellulose (London, England)》2022,29(12):6983-6995

Wearable flexible sensors with quick response time and high stability are required in the fields of human motion detection, personal health monitoring, and artificial electronic skin. However, their design remains a challenge. To address this need, we fabricate a piezoresistive sensor with a wide detection limit, fast response time, and excellent stability in this work. Nickel (Ni) and copper (Cu) films are deposited on cotton fabric (CF) by in-situ polymerization of polyaniline (PANI) using magnetic filtration cathode vacuum arc deposition technology to obtain copper/polyaniline cotton (Cu/PANI/CF) and nickel/polyaniline cotton (Ni/PANI/CF). The pressure sensor is then fabricated by self-assembly. The proposed pressure sensor has a wide detection limit (0–180 kPa), rapid response time (30 ms), high cycle stability (>5000), and can detect the movement of each joint of the human body (such as the knee, finger, elbow, etc.). The sensor can also monitor different facial micro-expressions, including smiles and blinking. Based on the practical application of human motion signals and the detection of subtle stress, the proposed sensor demonstrates significant potential as a wearable electronic product for health monitoring.

Graphical abstract
  相似文献   

10.

Despite the success of lithium-ion batteries, recognized through the award of the 2019 Nobel Prize in Chemistry, the forecast of a wide application of these systems to avoid the use of fossil fuels and their effect on global warming has raised doubts about their safety, sustainability, and performance. To make a post-lithium era possible, other reducing metals are investigated. While sodium shows certain analogies with lithium, some advantages with respect to its abundance and availability or the lack of Al alloy that could substantially reduce production costs make sodium-ion batteries a good alternative, particularly for stationary applications. On the other hand, other abundant multivalent elements such as Mg can provide even higher energy densities. The possibility of using dual ions can be a strategy to get the best of each element in a synergistic battery system. Dual Na+/Mg2+ systems have been considered a potential option by different researchers. In this review, we shall discuss different results on dual-metal-ion systems studied in our laboratory, particularly vanadium oxides and phosphates and layered manganese oxides.

Graphical abstract

  相似文献   

11.

The existing energy situation demands not only the huge energy in a short time but also clean energy. In this regard, an integrated photo-supercapacitor device has been fabricated in which photoelectric conversion and energy storage are achieved simultaneously. A novel carbazole-based dye is synthesized and characterized for photosensitizer. The silver-doped titanium dioxide (Ag-TiO2) is synthesized, and it is used as photoanode material. Different concentrations of tetrabutylammonium iodide (TBAI)-doped polyvinyl alcohol–polyvinylpyrrolidone (PVA-PVP) blend polymer electrolytes are prepared, and their conductivity and dielectric properties were studied. Reduced graphene oxide (r-GO) is synthesized by a one-pot synthesis method and confirmed using Raman spectroscopy for counter electrode material in dye-sensitized solar cell (DSSC) and supercapacitor electrodes. The DSSC having 4% Ag-TiO2–based photoanode showed the highest efficiency of 1.06% (among r-GO counter electrodes) and 2.37% (among platinum counter electrodes). The supercapacitor before integration and after integration exhibits specific capacitance of 1.72 Fg−1 and 1.327 Fg−1, respectively.

Graphical Abstract

  相似文献   

12.

An eco-friendly method for diversity-oriented synthesis of substituted dihydropyrano[2,3-c]pyrazole and benzylpyrazolyl coumarin derivatives has been achieved via one-pot and multicomponent reaction in the presence of PdO/Al-SBA-15 as an efficient and recyclable catalyst in H2O/EtOH under reflux conditions. The significant merits of this method are wide scope, high yields of the desired products, short reaction times and simple workup procedure. In addition, this nanocatalyst was simply recovered and reused five times without significant loss in catalytic activity and also performance.

Graphical abstract
  相似文献   

13.

This paper reports on the use of a novel microcapillary system for solid contact electrochemical measurements. The probe is made of moveable micropipettes, with orifice of 1–30-μm radii, filled with a conducting hydrogel, which forms a thin-gelled meniscus at the pipette end. The hydrogel is made of 2 % (w/v) agarose and water solutions, containing KCl or KNO3 as supporting electrolytes. The micropipette can be brought in contact with a conducting substrate to form a microcell, which allows performing voltammetric measurements confined within limited contact regions. The suitability of the proposed probe for local electrochemical measurements are tested using two electroactive species, dissolved in the hydrogel, namely [Fe (CN6)]4- and Ag+ ions. Mass transport characteristics of the two species, in bulk hydrogel and at micropipette meniscuses of different radii, are examined in detail in the frame of existing theory. For comparison, voltammetric measurements are also performed with micropipettes filled with the corresponding aqueous solutions. It is shown that the gel-filled micropipette, at variance with the aqueous one, prevents the spreading and leakage of solution on the sample surface. The microprobe developed here can be useful to perform electrochemical measurements on surfaces, which suffer from direct contact with liquid electrolytes. A proof-of-concept hydrogel-capillary measurement is performed to distinguish the presence of metallic silver deposited on a graphite-on-paper–based material, realized through simple pencil strokes.

Graphical abstract

  相似文献   

14.

Metal surfaces covered with oxides have attracted considerable scientific attention in various applications. In particular, anodic films fabricated by cost-effective anodizing have been widely used in nano-structured engineering to provide various surface functionalities. However, understanding of alloy film stability, having individual elements with widely varying structures and morphologies, is very limited due to lack of thermodynamic information and effects of electrolyte chemistry. This requires many tedious efforts on a trial and error basis in selecting suitable electrolytes that can produce the protective film at high efficiency on alloys having mixed chemistries. It is, therefore, crucial to develop a combination of high throughput theoretical analysis and automated rapid localized electrochemical probing that provides a fast and simple solution for electrolyte choice and paves the way to the remarkable expansion of industrial applications of oxides. Herein, we demonstrate that combinatorial Al–Gd alloys covering 1.0 to 10.0 at.% Gd can be oxidized into ultra-thin anodic films of controlled thickness through a selection of electrolyte based on thermodynamics (phosphate buffer with a pH of 8.20). We propose that growth of anodic films on alloys at high efficiency is possible if Gibbs free energy minimization criteria would be systematically contemplate.

Graphical abstract
  相似文献   

15.

A simple and efficient method for the synthesis of pyrazolopyranopyrimidines under solvent-free has been developed. The one-pot multicomponent condensation of arylaldehydes with hydrazine hydrate, ethyl acetoacetate and barbituric acid in the vicinity of a mesoporous basic nanomagnetic catalyst, namely DBU immobilized on Fe3O4@nSiO2@mSiO2 was synthesized in remarkably high yields and in short reaction times. Significantly, this catalyst can be easily separated from the reaction media by applying an external magnet, and can be reused for several cycles.

Graphical abstract
  相似文献   

16.

An efficient and convenient procedure for the synthesis of novel 6-hydroxy-14-aryl-8H-dibenzo[a,i]xanthene-8,13(14H)-dione derivatives has been developed by one-pot, three-component condensation reaction between 2-hydroxynaphthalene-1,4-dione, aromatic aldehydes and 2,3-naphthalenediol in glacial acetic acid under reflux conditions. This domino reaction implies Knoevenagel condensation, Michael addition, intramolecular cyclization and dehydration. The reaction avoids tedious workup procedure due to the direct precipitation of products from the reaction medium. The notable features of this domino transformation are operational simplicity, clean reaction, easy handling, easy purification process and high yields of the products.

Graphical abstract
  相似文献   

17.

The development of a simple surface barrier discharge plasma device is presented to enable more widespread access to and utilization of plasma technology. The application of the plasma device was demonstrated for pretreatment of wood prior to application of protective coatings for outdoor usage. The coatings' overall performance was increased, showing a reduction or absence of cracking due to weathering on plasma-pretreated specimens. Moreover, after ten months of outdoor weathering, the plasma-pretreated specimens showed fewer infections with biotic factors and improved adhesion performance in cross-cut tests, while the surface gloss performed independently from plasma pretreatment. In contrast to that, plasma-pretreated specimens were slightly more prone to discoloration due to outdoor weathering, whereas the plasma pretreatment did not impact the initial color after coating application.

Graphic abstract
  相似文献   

18.

A new conductive terpolymer/graphene nanosheet hybrid composite has been synthesized by polymerizing pyrrole, chlorobenzaldehyde, and heptaldehyde (PPyCB&;H), in the presence of graphene nanosheets (GNS), using p-toluene sulfonic acid as a catalyst. Fourier transform infrared spectra, proton nuclear magnetic resonance, transmission electron microscopy, and X-ray diffraction patterns confirm the formation of PPyCB&;H/GNS hybrid nanocomposites. Further, the resultant nanocomposite material is coated on ITO to construct an electrochemical sensor for the reliable detection of single-strand DNA (tDNA) which is cleaved from the genomic DNA of Escherichia coli. Under optimized conditions, linear detection of genomic DNA (tDNA) with concentration ranging from 1.3 × 10−12 to 1.3 × 10−23 M is observed and it is repeatable with a 1.3 × 10−23 M lowest level detection limit. The present modified electrode of PPyCB&;H/GNS may show utility for constructing highly sensitive electrochemical sensors for the detection of E. coli.

Graphical abstract
  相似文献   

19.

Nickel-ruthenium alloys with various compositions have been deposited by electrodeposition for the first time. Cyclic voltammetry and linear stripping voltammetry measurements show that codeposition of nickel with ruthenium is possible below the potential value of nickel reduction. High-quality alloys containing nickel and ruthenium can be plated at cathodic potentials ranging from − 0.5 to − 1.0 V vs SCE. Deposited coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The diffractograms obtained show that an increase of nickel concentration in alloy will lead to a change in the phase composition and formation of NiRu (100) and (101) phases which is observed to be 78 mas.% Ni. SEM studies confirm the surface homogeneity and presence of small, regular grains. AFM observation allows the estimation of the real surface area of obtained alloys which increase with more negative electrodeposition potentials. Ni-Ru alloys were found to be highly electroactive in the water splitting process, which can be connected with the presence of the NiRu phase and a well-developed electroactive area.

Electrochemical deposition of Ni-Ru alloys with various composition and their catalytic activity in water splitting process

  相似文献   

20.
Hou  Rui  Li  Yilan  Sui  Zhigang  Yuan  Huiming  Yang  Kaiguang  Liang  Zhen  Zhang  Lihua  Zhang  Yukui 《Analytical and bioanalytical chemistry》2019,411(21):5351-5361

Exosomes are membrane-bound vesicles secreted by cells, and contain various important biological molecules, such as lipids, proteins, messenger RNAs, microRNAs, and noncoding RNAs. Emerging evidence demonstrates that proteomic analysis of exosomes is of great significance in studying metabolic diseases, tumor metastasis, immune regulation, and so forth. However, exosome proteomic analysis has high requirements with regard to the purity of collected exosomes. Here recent advances in the methods for isolating exosomes and their applications in proteomic analysis are summarized.

Graphical abstract

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号