首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 620 毫秒
1.
孙润广  郝长春  常怡光  张静  牛春玲 《化学学报》2009,67(15):1808-1814
鞘氨醇(sphingosine)是生物体内合成鞘脂的母体化合物, 是生物膜中的重要组分之一. 通过分析表面压力和平均分子面积(π-A)等温线数据分别研究了鞘氨醇与二棕榈酰基磷脂酰胆碱(DPPC)和二棕榈酰基磷脂酰乙醇胺(DPPE)二元组分单层膜的热力学特性, 并在恒定膜压下制备不同摩尔比例的混合脂膜用原子力显微镜进行观测. 实验结果表明: (1)鞘氨醇与DPPC组成的系统中, XD-Sph=0.2, 0.4, 0.6时, 过量分子面积与过量吉布斯自由能在所研究的表面压力下表现为负值, 而当XD-Sph=0.8时, 表现为正值; (2)鞘氨醇与DPPE组成的系统中, 当表面压力 π<25 mN•m-1时, 过量分子面积与过量吉布斯自由能在所研究的组分比例下表现为负值, 当π≥25 mN•m-1时为正值. 混合单层膜的分子面积与表面吉布斯自由能决定了分子间的相互作用, 当为负值时分子间相互作用表现为吸引力, 出现凝聚现象; 为正值时分子间相互作用表现为排斥力, 促使单层膜出现相分离现象. 过量吉布斯自由能值越小, 单层膜的热稳定性越高. 弹性系数曲线分析和AFM图片观测进一步验证了理论分析的结果.  相似文献   

2.
利用Langmuir-Blodgett(LB)技术制备了不同表面压力下的1,2-二油酸-甘油-3-磷脂酰胆碱(DOPC)/1,2-二棕榈酸甘油-3-磷脂酰胆碱(DPPC)(摩尔比为1:1)和DOPC/DPPC/Chol(摩尔比为2:2:1)单层膜, 对单层膜内分子间的相互作用进行了热力学分析, 并用荧光显微镜和原子力显微镜对其形态进行了观测.热力学分析表明, DOPC与DPPC分子在单层膜结构中相互作用为排斥力, 诱导单层膜出现相变; DOPC, DPPC与胆固醇(Chol)间的相互作用均为吸引力, 当表面压力(π)大于18 mN/m时, DPPC与胆固醇的作用力大于DOPC.荧光显微镜观测表明, DOPC/DPPC单层膜出现明显相分离现象, 富含DPPC微区成“花形”结构, 且随着表面压力的升高微区逐渐增大, “花瓣”增多; 当胆固醇加入到DOPC/DPPC体系时, 单层膜相态由液相与凝胶相共存转变为液态无序相与液态有序相共存结构, 富含DPPC的微区形状从“花形”转变成“圆形”.原子力显微镜对单层膜的表征验证了荧光显微镜的观测结果, 表明胆固醇加入到DOPC/DPPC体系中对单层膜排列具有明显的影响, 压力和溶液状态等是影响脂膜结构的重要因素.  相似文献   

3.
两性霉素B (AmB)为多烯类抗真菌抗生素, 它的吸收过程与生物膜有密切联系. 选用生物膜中的重要分子胆固醇为代表, 通过Langmuir-Blodgett (LB)膜技术测得胆固醇/两性霉素B单层膜表面压力与平均分子面积(π-A)曲线, 定量分析了固定模压下的平均分子面积(A)、弹性模量(CS-1)、过量吉布斯自由能(ΔGex)等参量. 实验结果表明, 胆固醇/两性霉素B两组分物质的量比与膜压对单层膜的弹性、稳定性以及热力学特性有影响|通过单层膜相互作用参数α进一步佐证了组分间物质的量比和表面压力对混合单层膜稳定性、混合性以及分子间相互作用具有重要影响.  相似文献   

4.
本文通过Langmuir单层膜的表面压力-平均分子面积(π-A)曲线的测定与分析,分别对髓鞘碱性蛋白(MBP)与细胞膜中不同头部基团脂质分子二棕榈酰基磷脂胆碱(DPPC)和二棕榈酰基磷脂酰乙醇胺(DPPE)在空气/液体界面上的相互作用过程进行了系统研究.实验结果表明:(1)当界面上脂质含量一定时,亚相中随着MBP浓度的增大,DPPC、DPPE单层膜的等温线向平均分子面积较大的方向移动;(2)在单层膜表面压力为10 mN/m时,一个MBP分子分别结合140±3个DPPC分子和100±3个DPPE分子,随着表面压力增大,当MBP分子分别与两种磷脂分子相互作用时,MBP插入到磷脂单层界面的个数逐渐减少;(3)随着蛋白质浓度的增加,脂分子形成的单层膜变得较为疏松,且MBP分子易于插入到分子头部较小的DPPE单层膜中;(4)蛋白质的存在使DPPC单层膜的表面压力逐渐减小,且蛋白质浓度越大表面压力降低越多,DPPC被MBP带入到亚相中越多;(5)对于DPPE单层膜,蛋白质通过与DPPE相互作用插入到界面膜中,引起表面压力增大,且蛋白质浓度越高,压力变化量越大.  相似文献   

5.
利用表面压力-平均分子面积(π-A)曲线的关系, 分别研究了在水/空气界面上形成的磷酯酰乙醇胺(PE)与硬脂酸(SA)和十八醇(OD)二元混合体系的热力学特性. 根据对弹性模量(CS-1)、过量分子面积(Aex)以及表面过量吉布斯自由能(ΔGex)等热力学参数的数据计算, 定量分析了混合单层膜分子之间的相互作用. 实验结果表明, PE/SA和PE/OD单层膜两种组分之间摩尔比对其热力学参数有影响. 热力学分析表明, 在XSA=0.2, 0.8和XOD=0.8处, PE/SA和PE/OD二元混合体系的热力学参数[过量分子面积(Aex)和表面过量吉布斯自由能(ΔGex)]相对理想状态均表现为负偏差作用, 说明分子之间的作用为引力作用. 相反, PE/OD二元体系在XOD=0.2, 0.4, 0.6处, 表现为正偏差作用, 这说明分子之间的作用为斥力作用. AFM观测为PE/SA和PE/OD单层膜热力学特性的理论分析提供了有力的支持.  相似文献   

6.
选取哺乳动物生物膜中的重要脂质分子鞘磷脂(SM)作为单分子膜的基本组分, 采用Langmuir-Blodgett(LB)膜技术研究了不同比例的两性霉素B/鞘磷脂单层膜的表面压力-平均分子面积(π-A)曲线以及基于π-A曲线的混合性分析, 同时通过原子力显微镜(AFM)研究了其表面形态的变化. 结果表明, 组分间的摩尔比和表面压力对混合单层膜稳定性、混合性以及分子间相互作用具有重要影响.  相似文献   

7.
植物甾醇对生物膜具有重要的调节作用,甾醇尾部的饱和程度对生物膜性质的影响一直是个热点问题.通过LB技术和原子力显微镜分别研究了尾部是单键的β-谷甾醇(β-sito)和尾部是双键的豆甾醇(stig)与二棕榈酰磷脂酰胆碱(DPPC)的相互作用,深入分析了β-谷甾醇、豆甾醇对DPPC单分子膜液态扩张-液态聚集(LE-LC)相变过程的影响.实验结果表明:β-谷甾醇、豆甾醇添加到DPPC单分子膜中,膜的压缩性以及分子的排列都发生了较大变化.当植物甾醇含量Xsterols=0.8时,β-谷甾醇、豆甾醇与DPPC相互作用具有相同的规律,过量分子面积和过量吉布斯自由能均为负值,说明分子间的吸引力比排斥力更强;在低浓度下,Xsterols=0.2,0.4时,两种系统的过量分子面积和过量吉布斯自由能呈现出明显的区别,尾部是单键的β-谷甾醇和DPPC混合单分子膜的排斥力更强烈,而尾部是双键的豆甾醇和DPPC混合单分子膜的吸引力更强烈,说明尾部是双键的豆甾醇比尾部是单键的β-谷甾醇更容易和DPPC发生凝聚,AFM数据进一步证实了这些结果.  相似文献   

8.
陈莹莹  孙润广  王夫雨  潘勤 《化学学报》2011,69(19):2299-2306
紫杉醇透过细胞膜的药物吸收过程及其脂质体制备与紫杉醇/脂质相互作用密切相关. 通过Langmuir膜技术和原子力显微镜(AFM)观测, 研究了不同比例的二棕榈酰磷脂胆碱(DPPC)/紫杉醇(paclitaxel)二元混合系统在空气/水界面上的单分子层相互作用. 对膜压-面积(π-A)曲线的测量和基于π-A曲线的混合性分析、热力学稳定性分析及可压缩性分析表明: 紫杉醇和DPPC相互混合, 不同分子间存在斥力, 混合单分子层出现相分离. 除紫杉醇摩尔分数(xpac)为0.4外, 这些现象均随单分子层压缩增加到一定程度后出现反转|对xpac=0.4, 不同分子间混合程度、斥力作用和单分子层中相分离均远超过其他混合比例的单分子层, 且随单分子层压缩程度持续增加, 不同分子间相互作用的影响远远超过压缩程度|xpac≤0.4时, 脂质单分子层结构受紫杉醇影响较小, 超过0.4后脂质单分子层结构遭到严重破坏. 利用原子力显微镜对紫杉醇/DPPC单分子层进行了表面形貌观测, 证实了Langmuir研究的结果.  相似文献   

9.
脂筏是近年来在生物膜研究中发现的一种富含鞘脂、胆固醇和特殊蛋白质的动态微区结构,其结构和功能的改变,会引发多种疾病.本文利用LB膜技术模拟脂筏的动态微区结构,通过测量表面压力与平均分子面积(π-A)曲线数据,计算出鞘氨醇/胆固醇LB单层膜的过量分子面积(△A(ex))、表面过量吉布斯自由能(△G(ex))、活度系数(f1和f2)以及弹性模量(Cs^-1),系统的研究了二元组份混合单层膜的热力学特性,并用原子力显微镜对鞘氨醇与胆固醇混合膜的形态进行观察.热力学分析表明过量分子面积和过量吉布斯自由能相对理想状态都具有负偏差作用,这说明分子间相互作用表现为吸引力,且单层膜的稳定性、弹性模量和活度系数的数值明显的依赖于胆固醇与鞘氨醇的比例.AFM观察结果表明,纯鞘氨醇单分子膜表现为小的颗粒体结构;当鞘氨醇与胆固醇按不同摩尔比混合时,随着胆固醇摩尔比例的增加,混合膜呈现出从链状结构向较大的片层与网状共存结构的转化.最终纯胆固醇形成高度紧密的膜结构.AFM实验有力的支持了理论分析的结果.  相似文献   

10.
研究了一种微生物脂肽--表面活性素与二肉豆蔻酰磷脂酰胆碱(DMPC)在气,液界面形成的混合单分子膜性质.测定了混合单分子膜的表面压.分子面积(л-A)曲线,根据л-A曲线获得了不同表面压下混合单分子膜的过剩面积(Aex)和混合过剩自由能(△Gmex)与混合单分子膜中表面活性素摩尔分数的关系.Aex和△Gmex的计算结果均表明,表面活性素与DMPC在纯水亚相上形成的混合单分子膜中不相容,二者之间 的相互作用主要是排斥力.通过原子力显微镜观察了在表面压15mN/m下的混合单分子膜的LB膜,发现表面活性素与DMPC发生了微相分离,说明二者在混合膜中的烷基链取向不同,这可能是二者发生排斥作用的主要原因之一.此外,还研究了亚相pH对混合单分子膜相容性的影响,发现表面活性素与DMPC在混合单分子膜中的相容性在碱性环境下增强,这可能与二者极性头基之间的相互作用有关.  相似文献   

11.
The investigation of the characteristics of mixed floating monolayers of phospholipids and usnic acid (UA), an active metabolite from lichens, can provide valuable information on how to prepare stable liposomes that could serve as carriers of UA for therapeutic proposes. The present paper is concerned with the thermodynamic analysis of the behavior of Langmuir monolayers formed by mixing different phospholipids (dibehenoylphosphatidylcholine, DBPC, dipalmitoylphosphatidylcholine, DPPC, and dioleoylphosphatidylcholine, DOPC) and UA at varied molar fractions. Relevant thermodynamic parameters such as excess areas, excess free energies and free energy of mixing were derived from the surface pressure data obtained from compression measurements performed in a Langmuir trough. For the largest lateral pressure examined (25 mN/m), negative values of the excess free energy were found only for the DOPC/UA monolayer, which should be the most stable of them. Based on the calculated values of the free energy of mixing, we note that the DBPC/UA and DPPC/UA systems present the best mixed character at low pressures and when the molar fraction of the UA is 0.5; at that relative concentration and at low values of the external pressure, the UA molecules can better mix and interact with the phospholipid molecules. The compression isotherms for mixed monolayers show no visible transitions, exhibiting a more organized phase that corresponds to a negative free energy of mixing. We have established that the most stable monolayers were those corresponding to DOPC/UA mixtures with a UA molar fraction of 0.75.  相似文献   

12.
Two-component Langmuir monolayers formed on 0.02M Tris buffer solution (pH 7.4) with 0.13M NaCl at 298.2K were investigated for two different fluorinated-hydrogenated hybrid amphiphiles (F6PH5PPhNa and F8PH5PPhNa or F6 and F8, respectively) with DPPC. Surface pressure (pi), surface potential (DeltaV) and dipole moment (mu( perpendicular)) as a function of molecular surface area (A) were measured by employing the Whilhelmy method and an ionizing electrode method. From the A- and DeltaV-X(F6) (or X(F8)) curves, partial molecular surface area (PMA) and apparent partial molecular surface potential (APSP) were determined as a function of surface mole fraction (X(Fn)) at discrete surface pressures. Then, the behavior of occupied surface areas and surface potentials of the respective components could be made clearer. Compressibility (C(s)), elasticity (C(s)(-1)), and excess Gibbs energy (DeltaG((ex))) as a function of X(F6) (or X(F8)) were estimated at definite pressures. These physico-chemical parameters were found to reflect the mechanical strength of monolayer films formed. The regular solution theory being applied to DeltaG((ex)), the activity coefficients (f) as well as the interaction parameter (I(p)) between DPPC and two hybrid amphiphiles in the binary monolayers were evaluated. I(p) values thus obtained indicated that F8 molecules interact more strongly with DPPC molecules than F6. Moreover, in order to better understand the morphological monolayer state, Langmuir-Blodgett (LB) films made from DPPC and fluorinated-hydrogenated hybrid amphiphiles were examined by atomic force microscopy (AFM). The miscibility of the two components in the monolayer state is evidenced by these thermodynamic quantities and AFM observations. Furthermore, AFM images demonstrated that F8 could more effectively disperse the ordered domains of DPPC than F6.  相似文献   

13.
Molecular interactions between mycobacterial cell wall lipid, cord factor (CF) and the abundant surfactant lipid, dipalmitoylphosphatidylcholine (DPPC) were investigated using Langmuir monolayers at physiological temperatures (37 degrees C). Surface topography of the films was visualized by atomic force microscopy (AFM). Thermodynamic behavior of the mixed monolayers was evaluated by investigating the molecular area excess, excess Gibbs free energy of mixing and maximum compressibility modulus (SCM(max)). Cord factor formed immiscible and thermodynamically unstable monolayers with DPPC. Monolayer presence of cord factor altered the physical state of DPPC monolayers from liquid condensed to liquid expanded with the lowering of SCM(max) from 160 to 40 mN/m, respectively. AFM imaging exhibited smooth homogenous surface topography of DPPC films which in the presence of cord factor was markedly altered with the appearance of aggregates and increased surface roughness. The results highlight the capacity of cord factor to disturb DPPC monolayer organization and structure. Interfacial presence of cord factor results in DPPC monolayer fluidization. Lung surfactant function is attributed to its ability to form well packed low compressibility films. Such molecular interactions suggest a dysfunction of lung surfactant in pulmonary tuberculosis due to surfactant monolayer fluidization.  相似文献   

14.
15.
The antimalarial agent halofantrine penetrates dipalmitolylphosphatidylcholine (DPPC) monolayers resulting in an increase in surface pressure and an expansion in area occupied by the lipid components of the monolayer. This phenomenon is observed at concentrations (0.05-0.2 microm) of halofantrine that have no surface activity. Penetration increases with drug concentration and is greatest at low initial surface pressures of the monolayer. A critical surface pressure of the DPPC monolayer has been determined from constant area and constant pressure conditions. The magnitude of these values support the hypothesis that halofantrine readily penetrates the DPPC monolayers. The presence of cholesterol in the DPPC monolayer hampers penetration and a lower critical surface pressure is obtained under such conditions. Even then, a slower rate of penetration is observed only in monolayers maintained at high initial surface pressures (10, 15 mN/m), corresponding to the liquid condensed phase of the monolayer, and not at low surface pressures (2.5, 5.0 mN/m). These results help to give a better understanding of the dynamics of the halofantrine-phospholipid interaction as well as the pharmacodynamic character of the drug.  相似文献   

16.
The membrane properties of the ganglioside GM1 (GM1)/dioleoylphosphatidylcholine (DOPC) binary system and GM1/dipalmitoylphosphatidylcholine (DPPC)/DOPC ternary system were investigated using surface pressure measurements and atomic force microscopy (AFM), and the effect of surface pressure on the properties of the membranes was examined. Mixed GM1/DPPC/DOPC monolayers were deposited on mica using the Langmuir-Blodgett technique for AFM. GM1 and DOPC were immiscible and phase-separated. The AFM image of the GM1/DOPC (1:1) monolayer showed island-like GM1 domains embedded in the DOPC matrix. There was no morphological change on varying surface pressure. The surface pressure-area isotherm of the GM1/DPPC/DOPC (2:9:9) monolayer showed a two-step collapse as in the DPPC/DOPC (1:1) monolayer. The AFM image for the GM1/DPPC/DOPC monolayer showed DPPC and GM1 domains in the DOPC matrix, and the DPPC-rich phase containing GM1 showed a percolation pattern the same as the GM1/DPPC (1:9) monolayer. The percolation pattern in the GM1/DPPC/DOPC monolayer changed as the surface pressure was varied. The surface pressure-responsive change in morphology of GM1 was affected by the surrounding environment, suggesting that the GM1 localized in each organ has a specific role.  相似文献   

17.
The role of dipalmitoylphosphatic acid (DPPA) as a transfer promoter to enhance the Langmuir-Blodgett (LB) deposition of a dipalmitoylphosphatidylcholine (DPPC) monolayer at air/liquid interfaces was investigated, and the effects of Ca2+ ions in the subphase were discussed. The miscibility of the two components at air/liquid interfaces was evaluated by surface pressure-area per molecule isotherms, thermodynamic analysis, and by the direct observation of Brewster angle microscopy (BAM). Multilayer LB deposition behavior of the mixed DPPA/DPPC monolayers was then studied by transferring the monolayers onto hydrophilic glass plates at a surface pressure of 30 mN/m. The results showed that the two components, DPPA and DPPC, were miscible in a monolayer on both subphases of pure water and 0.2 mM CaCl2 solution. However, an exception occurs between X(DPPA)=0.2 and 0.5 at air/CaCl2-solution interface, where a partially miscible monolayer with phase separation may occur. Negative deviations in the excess area analysis were found for the mixed monolayer system, indicating the existence of attractive interactions between DPPA and DPPC molecules in the monolayers. The monolayers were stable at the surface pressure of 30 mN/m for the following LB deposition as evaluated from the area relaxation behavior. It was found that the presence of Ca2+ ions had a stabilization effect for DPPA-rich monolayers, probably due to the association of negatively charged DPPA molecules with Ca2+ ions. Moreover, the Ca2+ ions may enhance the adhesion of DPPA polar groups to a glass surface and the interactions between DPPA polar groups in the multilayer LB film structure. As a result, Y-type multilayer LB films containing DPPC could be fabricated from the mixed DPPA/DPPC monolayers with the presence of Ca2+ ions.  相似文献   

18.
The effect of the environmental conditions both on the behaviour of fengycin at the air-aqueous interface and on its interaction with DPPC was studied using surface pressure-area isotherms and AFM. The ionisation state of fengycin is at the origin of its monolayer interfacial properties. The most organised interfacial arrangement is obtained when fengycin behaves as if having zero net charge (pH 2). In a fully ionised state (pH 7.4), the organisation and the stability of fengycin monolayers depend on the ionic strength in the subphase. This can modulate the surface potential of fengycin and consequently the electrostatic repulsions inside the interfacial monolayer, as well as the lipopeptide interaction with the layer of water molecules forming the air-water interface. Intermolecular interactions of fengycin with DPPC are also strongly affected by the ionisation state of lipopeptide and the surface pressure (Pi) of the monolayer. A better miscibility between both interfacial components is observed at pH 2, while negatively charged lipopeptide molecules are segregated from the DPPC phase. A progressive desorption of fengycin from the interface is observed at pH 7.4 when Pi increases while at pH 2, fengycin desorption brutally occurs when Pi rises above Pi value of the intermediate plateau.  相似文献   

19.
We determined how glucose or insulin interacts with a phospholipid monolayer at the air/water interface and explained these mechanisms from a physico-chemical point of view. The 1,2-dipalmitoyl-2-sn-glycero-3-phosphatidylcholine (DPPC) monolayer at an air/water interface acted as a model membrane, which allowed the effect of the molecular packing density in the monolayer on the interactions to be determined. The interaction of glucose, insulin, and a mixture of glucose and insulin to the DPPC monolayer were investigated via surface pressure-area per molecule Langmuir isotherms and fluorescence microscopy. Glucose adsorbed to the underside of the DPPC monolayer, while insulin was able to penetrate through the monolayer when the phospholipid molecules were not densely packed. The presence of a mixture of insulin and glucose affected the molecular packing in the DPPC monolayer differently than the pure insulin or glucose solutions, and the glucose-insulin mixture was seen to be able to penetrate through the monolayer. These results indicated that glucose and insulin interact with one another, giving a material that may then transported through a pore in the monolayer or through the spaces between the molecules of the monolayer.  相似文献   

20.
The surface pressure (π)– and the surface potential (ΔV)–area (A) isotherms were obtained for two-component monolayers of four different perfluorocarboxylic acids (FCns; perfluorododecanoic acid: FC12, perfluorotetradecanoic acid: FC14, perfluorohexadecanoic acid: FC16, perfluorooctadecanoic acid: FC18) with dipalmitoylphosphatidylcholine (DPPC) on substrate solution of 0.15 M NaCl (pH 2.0) at 298.2 K as a function of compositions in the mixtures by employing the Wilhelmy method, the ionizing electrode method, the fluorescence microscopy, and the atomic force microscopy. The data for the two-component monolayers on these systems were analyzed in terms of the additivity rule. Assuming a regular surface mixture, the Joos equation which allows one to describe the collapse pressure of a two-component monolayer with miscible components was used to declare the miscibility of the monolayer state, and an interaction parameter and an interaction energy were calculated. The new finding was that FCns and DPPC are miscible or immiscible depending on chain length increment of fluorocarbon part. That is, FC12/DPPC monolayer was perfectly miscible, and FC14/DPPC, and FC16/DPPC (0 ≤ XFC16 ≤ 0.3) monolayers were partially miscible. While FC16/DPPC (0.3 < XFC16 < 1) and FC18/DPPC systems are immiscible in the monolayer state. Furthermore, the mean molecular area, the surface dipole moment, and the phase diagrams enabled us to estimate the molecular orientation of four different perfluorocarboxylic acids/DPPC in the two-component monolayer state. One type of phase diagrams was obtained and classified into the positive azeotropic type. The miscibility of FCns and DPPC in the monolayer was also supported by fluorescence microscopy and atomic force microscopy. FC12/DPPC, FC14/DPPC and FC16/DPPC (0 ≤ XFC16 ≤ 0.3) two-component monolayers on 0.15 M NaCl (pH 2) showed that FC12, FC14 and FC16 (0 ≤ XFC16 ≤ 0.3) can dissolve or partially dissolve the ordered solid DPPC domains formed upon compression. This indicates that these fluorinated amphiphiles soften or harden the lipid depending on their chain length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号