首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
In this study, we investigated the interaction of fengycin, a lipopeptide produced by Bacillus subtilis, with lipid monolayers using the Langmuir trough technique in combination with Brewster angle microscopy. Thermodynamic analyses were performed to get further information about the mixing behavior and the molecular interactions between the two components. The effect of fengycin on the structural and morphological characteristics of DPPC monolayers, as a simple model of biological membranes, depends on the fengycin molar ratio. With a small proportion of fengycin (X(f)0.1), the compressibility of the monolayer is modified but the morphological characteristics of the DPPC are not significantly affected. At an intermediate molar ratio (0.1相似文献   

2.
This study investigated the roles of gamma-globulin in the dynamic interfacial behavior of dipalmitoyl phosphatidylcholine (DPPC)/gamma-globulin monolayers at air/liquid interfaces at 25 degrees C. The surface tension behavior demonstrated that gamma-globulin had a large adsorption time scale. Moreover, the surface pressure-area hysteresis behavior of adsorbed gamma-globulin monolayers suggested that no significant desorption occurred during the compression stage, and the respreading of gamma-globulin molecules at the interface during the expansion stage was slow. From the hysteresis behavior of adsorbed gamma-globulin monolayers with spread DPPC molecules, it was found that gamma-globulin molecules were expelled from the interface as DPPC molecules were in a condensed state. The squeeze-out of gamma-globulin molecules seemed to induce the loss of DPPC molecules at the interface with the extent depending on the initial gamma-globulin surface concentration. Furthermore, the expelled gamma-globulin molecules re-entered the monolayer and participated in the surface pressure increase during the following expansion stage. The exclusion of gamma-globulin associated with the removal of DPPC during monolayer compression and the re-entry of gamma-globulin during subsequent monolayer expansion represented a mechanism for DPPC depletion and gamma-globulin enrichment at the interface, which may explain the inhibitory effect of certain proteins on the surface activity of DPPC. Copyright 2000 Academic Press.  相似文献   

3.
Vibrational sum frequency generation spectroscopy is used to study the interactions of the charged soluble organic surfactant sodium dodecyl sulfate (SDS) with an insoluble 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayer at the air-aqueous interface. Results indicate that the surfactant species compete for surface sites in the mixed system, with a lower monolayer number density of DPPC molecules being observed in the presence of dodecyl sulfate anions at the interface. Spectroscopic results also indicate that fewer dodecyl sulfate chains reside at the interface when the insoluble DPPC film is present. Increased conformational ordering of the acyl chains of both the DPPC molecules and the interfacial dodecyl sulfate anions is observed in the mixed system. Additionally, charged surfactant SDS promotes the alignment of the interfacial water molecules even in the presence of a DPPC monolayer.  相似文献   

4.
Atomic force microscopy (AFM) combined with surface pressure-area isotherms were used to probe the interfacial behavior of phospholipid monolayers following penetration of surfactin, a cyclic lipopeptide produced by Bacillus subtilis strains. Prior to penetration experiments, interfacial behavior of different surfactin molecules (cyclic surfactins with three different aliphatic chain lengths--S13, S14, and S15--and a linear surfactin obtained by chemical cleavage of the cycle of the surfactin S15) has been investigated. A more hydrophobic aliphatic chain induces greater surface-active properties of the lipopeptide. The opening of the peptide ring reduces the surface activity. The effect of phospholipid acyl chain length (dimyristoylphosphatidylcholine, dipalmitoylphosphatidylcholine- (DPPC), and distearoylphosphatidylcholine) and phospholipid polar head (DPPC, dipalmitoylphosphatidylethanolamine and dipalmitoylphosphatidylserine) on monolayer penetration properties of the surfactin S15 has been explored. Results showed that while the lipid monolayer thickness and the presence of electrostatic repulsions from the interfacial film do not significantly influence surfactin insertion, these parameters strongly modulate the ability of the surfactin to alter the nanoscale organization of the lipid films. We also probed the effect of surfactin structure (influence of the aliphatic chain length and of the cyclic structure of the peptide ring) on the behavior of DPPC monolayers. AFM images and isotherms showed that surfactin penetration is promoted by longer lipopeptide chain length and a cyclic polar head. This indicates that hydrophobic interactions are of main importance for the penetration power of surfactin molecules.  相似文献   

5.
Interfacial properties of N-nitrosodiethylamine/bovine serum albumin (NDA/BSA) complexes were investigated at the air-water interface. The interfacial behavior at the chloroform-water interface of the interaction product of phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), dissolved in the chloroform phase, and NDA/BSA complex, in the aqueous phase, were also analyzed by using a drop tensiometer. The secondary structure changes of BSA with different NDA concentrations were monitored by circular dichroism spectroscopy at different pH and the NDA/BSA interaction was probed by fluorescence spectroscopy. Different NDA/BSA mixtures were prepared from 0, 7.5 x 10(-5), 2.2 x 10(-4), 3.7 x 10(-4), 5 x 10(-4), 1.6 x 10(-3), and 3.1 x 10(-3) M NDA solutions in order to afford 0, 300/1, 900/1, 1 500/1, 2 000/1, 6 000/1, and 12 500/1 NDA/BSA molar ratios, respectively, in the aqueous solutions. Increments of BSA alpha-helix contents were obtained up to the 2 000/1 NDA/BSA molar ratio, but at ratios beyond this value, the alpha-helix content practically disappeared. These BSA structure changes produced an increment of the surface pressure at the air-water interface, as the alpha-helix content increased with the concentration of NDA. On the contrary, when alpha-helix content decreased, the surface pressure also appeared lower than the one obtained with pure BSA solutions. The interaction of DPPC with NDA/BSA molecules at the chloroform-water interface produced also a small, but measurable, pressure increment with the addition of NDA molecules. Dynamic light scattering measurements of the molecular sizes of NDA/BSA complex at pH 4.6, 7.1, and 8.4 indicated that the size of extended BSA molecules at pH 4.6 increased in a greater proportion with the increment in NDA concentration than at the other studied pH values. Diffusion coefficients calculated from dynamic surface tension values, using a short-term solution of the general adsorption model of Ward and Tordai, also showed differences with pH and the NDA concentration. Both, the storage and loss dilatational elastic modulus were obtained at the air-water and at the chloroform-water interfaces. The interaction of NDA/BSA with DPPC at the chloroform-water produced a less rigid monolayer than the one obtained with pure DPPC (1 x 10(-5) M), indicating a significant penetration of NDA/BSA molecules at the interface. At short times and pH 4.6, the values of the storage elastic modulus were larger and more sensible to the NDA addition than the ones at pH 7.1 and 8.4, probably due to a gel-like network formation at the air-water interface.  相似文献   

6.
We determined how glucose or insulin interacts with a phospholipid monolayer at the air/water interface and explained these mechanisms from a physico-chemical point of view. The 1,2-dipalmitoyl-2-sn-glycero-3-phosphatidylcholine (DPPC) monolayer at an air/water interface acted as a model membrane, which allowed the effect of the molecular packing density in the monolayer on the interactions to be determined. The interaction of glucose, insulin, and a mixture of glucose and insulin to the DPPC monolayer were investigated via surface pressure-area per molecule Langmuir isotherms and fluorescence microscopy. Glucose adsorbed to the underside of the DPPC monolayer, while insulin was able to penetrate through the monolayer when the phospholipid molecules were not densely packed. The presence of a mixture of insulin and glucose affected the molecular packing in the DPPC monolayer differently than the pure insulin or glucose solutions, and the glucose-insulin mixture was seen to be able to penetrate through the monolayer. These results indicated that glucose and insulin interact with one another, giving a material that may then transported through a pore in the monolayer or through the spaces between the molecules of the monolayer.  相似文献   

7.
The interfacial behavior of the newly designed Fluorocarbon Hydrocarbon Cationic Lipid (FHCL or CH(3)(CH(2))(17)N(+)(C(2)H(5))(2)(CH(2))(3)(CF(2))(7)CF(3)I(-)) and its mixtures with a phospholipid (DPPC, Dipalmitoylphosphatidylcholine) at different mole fractions were investigated. This new molecule was synthesized to mimic the selected properties of lung surfactant, which is a natural lipid-protein mixture which is known to play important roles in the process of respiration, by considering the structure/function relation of lung surfactant protein (SP-C). Each segment in the molecular structure was selected to affect the molecular level interaction at the interface whereas the keeping the overall structure as simple as possible. The surface pressure area isotherms obtained for the mixtures of DPPC/FHCL indicated that there was repulsive interaction between DPPC and FHCL molecules. Due to the molecular level interaction, specifically at mole fraction 0.3, the isotherm obtained from that mixture resembled the isotherm obtained from the DPPC monolayer in the presence of SP-C. High elasticity of the interface was one of the important parameters for the respiration process, therefore, shear and dilatational elasticities of two-component systems were determined and they were found to be similar to the case where SP-C protein is present. Fluorescence microscopy images were taken in order to investigate the monolayer in details. The FHCL was able to fluidize the DPPC monolayer even at high surface pressures effectively. In addition, the cyclic compression-expansion isotherms were obtained to understand the spreading and re-spreading ability of the pure FHCL and the mixed DPPC/FHCL monolayers. At a specific mole fraction, X(FHCL)=0.3, the mixture exhibited good hysteresis in area, compressibility, recruitment index and re-spreading ability at the interface. All these results point out that FHCL can fulfill the selected features of the lung surfactant that are attributed to the presence of SP-C protein when mixed with DPPC, even if the molecular structure of the FHCL is quite simple.  相似文献   

8.
本文通过Langmuir单层膜的表面压力-平均分子面积(π-A)曲线的测定与分析,分别对髓鞘碱性蛋白(MBP)与细胞膜中不同头部基团脂质分子二棕榈酰基磷脂胆碱(DPPC)和二棕榈酰基磷脂酰乙醇胺(DPPE)在空气/液体界面上的相互作用过程进行了系统研究.实验结果表明:(1)当界面上脂质含量一定时,亚相中随着MBP浓度的增大,DPPC、DPPE单层膜的等温线向平均分子面积较大的方向移动;(2)在单层膜表面压力为10 mN/m时,一个MBP分子分别结合140±3个DPPC分子和100±3个DPPE分子,随着表面压力增大,当MBP分子分别与两种磷脂分子相互作用时,MBP插入到磷脂单层界面的个数逐渐减少;(3)随着蛋白质浓度的增加,脂分子形成的单层膜变得较为疏松,且MBP分子易于插入到分子头部较小的DPPE单层膜中;(4)蛋白质的存在使DPPC单层膜的表面压力逐渐减小,且蛋白质浓度越大表面压力降低越多,DPPC被MBP带入到亚相中越多;(5)对于DPPE单层膜,蛋白质通过与DPPE相互作用插入到界面膜中,引起表面压力增大,且蛋白质浓度越高,压力变化量越大.  相似文献   

9.
Structural characteristics (structure, elasticity, topography, and film thickness) of dipalmitoyl phosphatidylcholine (DPPC) and dioleoyl phosphatidylcholine (DOPC) monolayers were determined at the air-water interface at 20 degrees C and pH values of 5, 7, and 9 by means of surface pressure (pi)-area (A) isotherms combined with Brewster angle microscopy (BAM) and atomic force microscopy (AFM). From the pi-A isotherms and the monolayer elasticity, we deduced that, during compression, DPPC monolayers present a structural polymorphism at the air-water interface, with the homogeneous liquid-expanded (LE) structure; the liquid-condensed structure (LC) showing film anisotropy and DPPC domains with heterogeneous structures; and, finally, a homogeneous structure when the close-packed film molecules were in the solid (S) structure at higher surface pressures. However, DOPC monolayers had a liquid-expanded (LE) structure under all experimental conditions, a consequence of weak molecular interactions because of the double bond of the hydrocarbon chain. DPPC and DOPC monolayer structures are practically the same at pH values of 5 and 7, but a more expanded structure in the monolayer with a lower elasticity was observed at pH 9. BAM and AFM images corroborate, at the microscopic and nanoscopic levels, respectively, the same structural polymorphism deduced from the pi-A isotherm for DPPC and the homogeneous structure for DOPC monolayers as a function of surface pressure and the aqueous-phase pH. The results also corroborate that the structural characteristics and topography of phospholipids (DPPC and DOPC) are highly dependent on the presence of a double bond in the hydrocarbon chain.  相似文献   

10.
4-amino-2-phenyl, 6(p-fluor-phenyl)-5-carbonitrile-pyrimidine (APCP) is a new derivative of pyrimidine with low solubility in water and anti-inflammatory properties. We compared the interfacial behaviors of spread films of poly(ethylene glycol)-grafted phospholipid (DSPE-PEG2000), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and APCP and a mixture of these molecules. The surface pressure–area (Π–A) isotherm showed that APCP and DSPE-PEG2000 molecules were stable at the air/water interface and could be evenly inserted into a DPPC floating monolayer. The introduction of APCP into the DPPC/(DSPE-PEG2000) binary monolayer generally causes an overall increase in surface potential. Analyses of distance variation between the grafted sites are associated with a change of mushroom to brush conformation and this behavior is observed for the DPPC/(DSPE-PEG2000) and DPPC/(DSPE-PEG2000)/APCP monolayers. Langmuir–Blodgett (LB) films of molecules of biological interest were transferred onto mica in order to investigate their interaction. AFM images do not show any regular shape or size and are randomly distributed.  相似文献   

11.
In this work, surface film balance and Brewster angle microscopy techniques have been used to analyze the structural characteristics (structure, topography, reflectivity, thickness, miscibility, and interactions) of hydrolysates from sunflower protein isolate (SPI) and dipalmitoylphosphatidylcholine (DPPC) mixed monolayers spread on the air-water interface. The degree of hydrolysis (DH) of SPI, low (5.62%), medium (23.5%), and high (46.3%), and the protein/DPPC mass fraction were analyzed as variables. The structural characteristics of the mixed monolayers deduced from the surface pressure (pi)-area (A) isotherms depend on the interfacial composition and degree of hydrolysis. At surface pressures lower than the equilibrium surface pressure of SPI hydrolysate (pi(e)(SPI hydrolysate)), both DPPC and protein are present in the mixed monolayer. At higher surface pressures (at pi > pi(e)(SPI hydrolysate)), collapsed protein residues may be displaced from the interface by DPPC molecules. The differences observed between pure SPI hydrolysates and DPPC in reflectivity (I) and monolayer thickness during monolayer compression have been used to analyze the topographical characteristics of SPI hydrolysates and DPPC mixed monolayers at the air-water interface. The topography, reflectivity, and thickness of mixed monolayers confirm at microscopic and nanoscopic levels the structural characteristics deduced from the pi-A isotherms.  相似文献   

12.
Two-component Langmuir monolayers formed on 0.02M Tris buffer solution (pH 7.4) with 0.13M NaCl at 298.2K were investigated for two different fluorinated-hydrogenated hybrid amphiphiles (F6PH5PPhNa and F8PH5PPhNa or F6 and F8, respectively) with DPPC. Surface pressure (pi), surface potential (DeltaV) and dipole moment (mu( perpendicular)) as a function of molecular surface area (A) were measured by employing the Whilhelmy method and an ionizing electrode method. From the A- and DeltaV-X(F6) (or X(F8)) curves, partial molecular surface area (PMA) and apparent partial molecular surface potential (APSP) were determined as a function of surface mole fraction (X(Fn)) at discrete surface pressures. Then, the behavior of occupied surface areas and surface potentials of the respective components could be made clearer. Compressibility (C(s)), elasticity (C(s)(-1)), and excess Gibbs energy (DeltaG((ex))) as a function of X(F6) (or X(F8)) were estimated at definite pressures. These physico-chemical parameters were found to reflect the mechanical strength of monolayer films formed. The regular solution theory being applied to DeltaG((ex)), the activity coefficients (f) as well as the interaction parameter (I(p)) between DPPC and two hybrid amphiphiles in the binary monolayers were evaluated. I(p) values thus obtained indicated that F8 molecules interact more strongly with DPPC molecules than F6. Moreover, in order to better understand the morphological monolayer state, Langmuir-Blodgett (LB) films made from DPPC and fluorinated-hydrogenated hybrid amphiphiles were examined by atomic force microscopy (AFM). The miscibility of the two components in the monolayer state is evidenced by these thermodynamic quantities and AFM observations. Furthermore, AFM images demonstrated that F8 could more effectively disperse the ordered domains of DPPC than F6.  相似文献   

13.
Melittin, a membrane-active peptide with antimicrobial activity, was investigated at the interface formed between two immiscible electrolyte solutions (ITIES) supported on a metallic electrode. Ion-transfer voltammetry showed well-defined semi-reversible transfer peaks along with adsorptive peaks. The reversible adsorption of melittin at the liquid-liquid interface is qualitatively discussed from voltammetric data and experimentally confirmed by real-time image analysis of video snapshots. It is also demonstrated that polarization of the water/1,2-DCE interface results in drastic drop shape variations caused by large variations of the interfacial tension. The experimental data also confirmed that maximum adsorption occurs near the ion transfer potential. Finally, the interaction of melittin with a monolayer of L-α-dipalmitoyl phosphatidylcholine (DPPC) was also investigated showing that melittin destabilizes the lipidic monolayer facilitating its desorption. The non-covalent complex formation between melittin and DPPC was confirmed by mass spectrometry.  相似文献   

14.
In this work we are concerned with the study of long-term relaxation phenomena in dipalmitoyl phosphatidylcholine (DPPC) and dioleoyl phosphatidylcholine (DOPC) monolayers spread at the air–water interface as a function of the surface pressure and the aqueous phase pH (pH 5, 7, and 9). Long-term relaxation phenomena were determined in an automated Langmuir-type film balance at constant temperature (20 °C). Two kinds of experiments were performed to analyze relaxation mechanisms. In one, the surface pressure (π) was kept constant, and the area (A) was measured as a function of time (θ). In the second, the area was kept constant at monolayer collapse and the surface pressure was decreased. This decrease was measured as a function of time. Various relaxation mechanisms, including monolayer molecular loss by dissolution, collapse, and/or organization/reorganization changes, can be fitted to the results derived from these experiments. These relaxation mechanisms are pH and phospholipid dependent. In the discussion, special attention will be given to the effect of the relaxation phenomena on the hysteresis in πA isotherms before and after the relaxation experiment. At π lower than the equilibrium spreading pressure (πe) the relaxation phenomena are mainly due to the loss of DPPC or DOPC molecules by desorption into the bulk aqueous phase. The formation of interfacial macroscopic vesicles, which are dissolved into the bulk phase, makes the phospholipid monolayer molecular loss irreversible. At the collapse point (at π > πe), the relaxation phenomena may be due either to collapse for DPPC and/or to a complex mechanism including competition between desorption and monolayer collapse for DOPC.  相似文献   

15.
The reductive desorption of a self-assembled monolayer (SAM) of a fluorescent thiol molecule (BodipyC10SH) from Au was characterized using electrochemistry and epi-fluorescence microscopy. Molecular luminescence is quenched near a metal surface, so fluorescence was only observed for molecules reductively desorbed and then separated from the electrode surface. Fluorescence imaging showed that reductive desorption was selective, with desorption occurring from different regions of the Au electrode depending on the extent of the negative potential excursion. When desorbed, the molecules were sufficiently mobile, diffusing away from the electrode surface, thereby preventing oxidative readsorption. At sufficiently negative desorption potentials, all of the thiol was desorbed from the electrode surface, resulting in fluorescence at the air/solution interface. The selective removal of the thiol monolayer from distinct regions was correlated to features on the electrode surface and was explained through potential-dependent interfacial energies. This in situ electrofluorescence microscopy technique may be useful in sensor development.  相似文献   

16.
The adsorption behavior of dipalmitoylphosphatidylcholine (DPPC), which is the major component of lung surfactant, at the air/aqueous interface and the competitive adsorption with bovine serum albumin (BSA) were studied with tensiometry, infrared reflection absorption spectroscopy (IRRAS), and ellipsometry. Dynamic surface tensions lower than 1 mN/m were observed for DPPC dispersions, with mostly vesicles, prepared with new protocols, involving extensive sonication above 50 °C. The lipid adsorbs faster and more extensively for DPPC dispersions with vesicles than with liposomes. For DPPC dispersions by a certain preparation procedure at T > Tc, when lipid particles were observed on the surface, dynamic surface tensions as low as 1 mN/m were measured. Moreover, IRRAS intensities and ellipsometric δΔ values were found to be much higher than the values for other DPPC dispersions or spread DPPC monolayers, suggesting that a larger amount of liposomes or vesicles adsorb on the surface. For DPPC/BSA mixtures, the tension behavior is controlled primarily by BSA, which prevents the formation of a dense DPPC monolayer. When BSA is injected into the subphase with a spread DPPC monolayer or into a DPPC dispersion with preadsorbed layers, little or no BSA adsorbs and the DPPC layer remains on the surface. When a DPPC monolayer is spread on a BSA solution at 0.1 wt% at 25 °C, then DPPC lipid can displace the adsorbed BSA molecules. The lack of BSA adsorption, and the expulsion of BSA by DPPC monolayer is probably due to the strong hydrophilicity of the lipid polar headgroup. When a DPPC dispersion is introduced with Trurnit's method or when dispersion drops are sprayed onto the surface of a DPPC/BSA mixture, the surface tension becomes lower and is controlled by DPPC, which can prevent the adsorption of BSA. The results may be important in understanding inhibition of lung surfactants by serum proteins and in designing efficient protocols of surfactant preparation and administration.  相似文献   

17.
Influence of surfactant on gas bubble stability   总被引:2,自引:0,他引:2  
Gas-bubble stability is achieved either by a reduction in the Laplace pressure or by a reduction in the permeability of the gas-liquid interface. Although insoluble surfactants have been shown definitively in many studies to lower the permeability of the gas-liquid interface and hence increase the resistance to interfacial mass transfer, remarkably little work has been done on the effects of soluble surfactants. An experimental system was developed to measure the effect of the soluble surfactant dodecyl trimethylammonium bromide on the desorption and absorption of carbon dioxide gas through a quiescent planar interface. The desorption experiments conformed to the model of non-steady-state molecular diffusion. The absorption experiments, however, produced an unexpected mass transfer mechanism, with surface renewal, probably because of instability in the density gradient formed by the carbon dioxide. In general, the soluble surfactant produced no measurable reduction in the rate of interfacial mass transfer for desorption or absorption. This finding is consistent with the conclusion of Caskey and Barlage that soluble surfactants produce a significantly lower resistance to interfacial mass transfer than do insoluble surfactants. The dynamic adsorption and desorption of the surfactant molecules at the gas-liquid interface creates short-term vacancies, which presumably permit the unrestricted transfer of the gas molecules through the interface. This surfactant exchange does not occur for insoluble surfactants. Gas bubbles formed in the presence of a high concentration of soluble surfactant were observed to dissolve completely, while those formed in the presence of the insoluble surfactant stearic acid did not dissolve easily, and persisted for very long periods. The interfacial concentration of stearic acid rises during bubble dissolution, as it is insoluble, and must eventually achieve full monolayer coverage and a state of compression, lowering the permeability of the interface. Thus, insoluble surfactants or hydrophobic impurities from solid surfaces may account for increased bubble stability.  相似文献   

18.
宋昌盛  叶汝强  牟伯中 《化学学报》2009,67(17):2038-2042
研究了一种微生物脂肽——Surfactin(表面活性素)在气/液界面形成的单分子膜性质, 测定了压缩速度对其单分子膜的表面压-分子面积(π-A)曲线的影响. 结果表明, Surfactin单分子膜铺展在pH=2酸性亚相上的过程是一个亚稳过程. 通过原子力显微镜(AFM)观察了不同压缩速度时在25 mN•m-1下转移的Langmuir-Blodgett (LB)膜. 在中等压缩速度(0.6 nm2•mol-1• min-1)时转移的LB膜表面观察到分布均匀、排列规则、类似球形的表面聚集体, 而在其它压缩速度下, 形成了按一定规则分布的表面团簇结构. 结合π-A曲线和AFM图像, 提出了Surfactin表面聚集体在气/液界面上的形成机制.  相似文献   

19.
Interaction of α-Synuclein (αS) with biological lipids is crucial for the onset of its fibrillation at the cell membrane/water interface. Probed herein is the interaction of αS with membrane-mimicking lipid monolayer/water interfaces. The results depict that αS interacts negligibly with zwitterionic lipids, but strongly affects the pristine air/water and charged lipid/water interfaces by perturbing the structure and orientation of the interfacial water. The net negative αS (−9 in bulk water; pH 7.4) reorients the water as hydrogen-up (H-up) at the air/water interface, and electrostatically interacts with positively charged lipids, making the interface nearly net neutral. αS also interacts with negatively charged lipids: the net H-up orientation of the interfacial water decreases at the anionic lipid/water interface, revealing a domain-specific interaction of net negative αS with the negatively charged lipids at the membrane surface.  相似文献   

20.
The induced removal of dipalmitoyl phosphatidylcholine (DPPC) by the exclusion of fibrinogen from mixed DPPC/fibrinogen monolayers at compressed air/liquid interfaces was analyzed. The surface pressure-area hysteresis curves of the monolayers at interfaces were obtained by a Langmuir trough. The hysteresis curves of equilibrium fibrinogen adsorption layers suggest that fibrinogen desorption during the area compression stage became significant at a higher bulk concentration of 1000 ppm. For mixed monolayers of DPPC with fibrinogen, the fibrinogen molecules were expelled from the interface upon compression due to the presence of insoluble DPPC molecules. The squeeze-out of fibrinogen molecules evidently removed a significant number of DPPC molecules from the interface, with the extent depending on fibrinogen surface concentration. During the subsequent area expansion stage, fibrinogen molecules entered the interface and participated in the rise of surface pressure. The induced loss of free DPPC molecules at the interface by the expelled fibrinogen molecules during the area compression stage was then evaluated from the hysteresis curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号