首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We experimentally study the effect of the air gap on conversion efficiency and the spectrum of generated third-harmonic pulses in the dual-tripler broadband third-harmonic generation scheme. The experimental results are in good agreement with predictions that the 4-cm air gap is equivalent to a full cycle of phase mismatch among the three interacting pulses (i.e. the fundamental, second-harmonic and third-harmonic pulse). The experimental results also show that the spectrum of the third-harmonic pulse is sensitive to the air gap. We also point out that the air gap effect can be ignored when the dual-tripler system is located in 1000 Pa atmosphere. These results will guide the design of the broadband third-harmonic generation system in high power lasers.  相似文献   

2.
The third harmonic of 810-nm 100-fs pulses at 130 μJ is generated very efficiently when ultrashort pulses from two noncollinear beams interfere in an optical medium to create an instantaneous transient grating via the optical Kerr effect. The grating couples two pathways for third-harmonic generation, each taking two photons from one beam and one photon from the other beam, respectively. The coupling enables self-phase matching in the complete process, resulting in a conversion efficiency of ≈3%. Scattering an independent beam at the transient grating confirms a lifetime limited by the pulse duration, with a reaction on the order of one optical cycle. Using the second harmonic of a Ti-sapphire laser at 405 nm, it is shown that the generation of the transient Kerr grating is a general feature, requiring less than 20 μJ/pulse. By introducing a third femtosecond beam we are able to emulate various digital logic units with femtosecond response. Received: 16 October 2001 / Published online: 6 June 2002  相似文献   

3.
Femtosecond pulses at 496 nm were Raman-shifted in methane with 20% efficiency. The pulse duration could be reduced up to 6.5 times from 560 fs at the fundamental to 85 fs at the Stokes frequency (580nm), which is the shortest pulse duration generated in this way. It was shown experimentally that chirped-pulse Raman scattering avoids the limitations arising from self-phase modulation.  相似文献   

4.
In this paper, the multi-stage compression of picosecond pulses by cascaded quadratic nonlinearity is studied theoretically, and the dependence of pulse compression on phase-mismatch, laser intensity, and crystal characteristics has been discussed in detail. We demonstrate that the multi-stage pulse compression is much more efficient than the single-stage with a same total crystal length. Pulses as short as ∼150 fs can be generated by compressing 30-ps initial pulses in a two-stage configuration under the realistic crystal and laser conditions, and shorter pulses of ∼30 fs may be obtained by three-stage compression. Pulse compression performances with BiBO and BBO crystals are compared and discussed finally.  相似文献   

5.
The distance-resolved spectral intensity distribution of the backscattered light from long filaments generated in air using ultra-short and intense laser pulses is presented. A clean fluorescence spectrum from N2 molecules and ions, which is produced by the high peak intensity inside the plasma filament of the fundamental pulse, was clearly resolved from the backscattered supercontinuum. The supercontinuum generated by both the fundamental and the third-harmonic pulses developed progressively and became fully developed only at the end of the filamentation.  相似文献   

6.
Photorefractive polymers allow to reversibly record holograms over a broad spectral range. This capability offers the possibility to store the information contained in ultrafast optical pulses (i.e., time domain) in the frequency domain. We demonstrate a storage bandwidth of >80 nm around 800 nm (i.e., >36 THz), giving a temporal resolution for Gaussian pulses of 13 fs at room temperature. Time reversal of a pulse train of 130 fs pulses confirms these capabilities.  相似文献   

7.
The harmonic spectrum generated by a few-cycle laser pulse propagating through a gas jet is calculated. Two complementary atomic response models are used, one based on the time-dependent Schrödinger equation and the other on quantum orbits in which only a single pair of electron trajectories are taken into account. The role played by individual electron trajectories in determining particular features of the spectrum are considered and phase-matching maps are used to help understand their structure. A method based on this connection is proposed for diagnosing the carrier-envelope phase and the pulse duration of the incident laser field.  相似文献   

8.
Spatial and spectral control, using an intracavity capillary and a slit, is applied to improve the output pulse quality of a Ti:sapphire laser. Satellite-free 10-fs optical pulses with a smooth spectral and spatial profile have been generated. Employing a root-mean-square formalism for pulse characterization, spatial, spectral and temporal intensity distributions are analyzed for laser pulses with a duration as short as three to four optical cycles. Received: 11 June 2001 / Published online: 18 July 2001  相似文献   

9.
田立强  施卫 《中国物理快报》2008,25(7):2511-2513
Semi-insulating photoconductive semiconductor switch with an electrode gap of 4 mm, triggered by a laser pulse with energy of 0.5md, and applied bias of 2.5kV, the periodicity current oscillation with a cycle of 12ns is obtained. It is indicated that the current oscillation is one mode of transferred electron effect, namely quenched domain mode. This mode of trans-electron oscillator is obtained when the instantaneous bias electric field drops below the sustaining field (the minimum electric field required to support the domain) before the domain reaches the anode, which leads to the domain disappears somewhere in the bulk of the switch and away from the ohmic contacts. We mainly analyse the time-dependent characteristic of the mode, the theoretical analysis results are in excellent agreement with the experiment.  相似文献   

10.
We describe a method of ultrashort-pulse and ultrafast-pulse-train generation through optical parametric amplification of a laser beat wave. Numerical simulation shows that 250-fs laser pulses at 1.55 μm are generated from a beat-wave seeded optical parametric amplifier pumped by a 30-ps laser at 1064 nm. The pulse compression is attributable to sideband generation and parametric amplification under group velocity mismatch. Our experimental result confirms efficient generation of comb-like sidebands for the mixing waves from such an optical parametric amplifier.  相似文献   

11.
Investigation of ferroelectric coercive field in LiNbO3   总被引:1,自引:0,他引:1  
3 using the pulse-field method was performed. It was found that the coercive field varies with time after domain reversal. The possible origins of this phenomenon are discussed. Received: 27 January 1997/Accepted: 7 April 1997  相似文献   

12.
We investigate numerically the influence of the pressure on femtosecond filamentation in air. We show that femtosecond filamentation occurs at low pressure and compute the features of the plasma channel generated in the wake of the pulse. We discuss the influence of the pulse duration, chirp and input beam shape on the length of the plasma channels. These calculations constitute a prerequisite for laboratory experiments over short distances as well as for vertical femtosecond filamentation at high altitude on which light detection and ranging techniques or lightning protection rely.  相似文献   

13.
We theoretically and numerically evidence that optical rare and strong temporal events generated in fiber supercontinua originate from convective modulational instabilities. This convective nature is induced by higher-order terms (odd-order dispersion and stimulated Raman scattering) that break the time reversal symmetry of the nonlinear Schrödinger equation. We demonstrate (i) analytically that the third-order dispersion term alone turns the system to be convectively unstable and (ii) numerically that the sign of the curvature of the tail of the probability density function changes (in logarithmic scale) when the third-order dispersion term is added. This latter feature results in more powerful rare events. If, in addition, stimulated Raman scattering is taken into account, both the convective instabilities and the power of extreme events are further enhanced giving rise to a probability density function with a more pronounced curvature.  相似文献   

14.
Employing the technique of symmetry reduction of analytic method, we solve the Ginzburg-Landau equation with varying nonlinear, dispersion, gain coefficients, and gain dispersion which originates from the limiting effect of transition bandwidth in the realistic doped fibres. The parabolic asymptotic self-similar analytical solutions in gain medium of the normal GVD is found for the first time to our best knowledge. The evolution of pulse amplitude, strict linear phase chirp and effective temporal width are given with self-similarity results in longitudinal nonlinearity distribution and longitudinal gain fibre. These analytical solutions are in good agreement with the numerical simulations. Furthermore, we theoretically prove that pulse evolution has the characteristics of parabolic asymptotic self-similarity in doped ions dipole gain fibres.  相似文献   

15.
The paper reports on an experimental investigation and numerical analysis of noncritically and critically phasematched LiB3O5 (LBO) optical parametric oscillators (OPOs) synchronously pumped by the third harmonic of a cw diode-pumped mode-locked Nd:YVO4 oscillator–amplifier system. The laser system generates 9.0 W of 355-nm mode-locked radiation with a pulse duration of 7.5 ps and a repetition rate of 84 MHz. The LBO OPO, synchronously pumped by the 355-nm pulses, generates a signal wave tunable in the blue spectral range 457–479 nm. With a power of up to 5.0 W at 462 nm and 1.7 W at 1535 nm the conversion efficiency is 74%. The OPO is characterized experimentally by measuring the output power (and its dependence on the pump power, the transmission of the output coupler and the resonator length) and the pulse properties (such as pulse duration and spectral width). Also the beam quality of the resonant and nonresonant waves is investigated. The measured results are compared with the predictions of a numerical analysis for Gaussian laser and OPO beams. In addition to the blue-signal output visible-red 629-nm radiation is generated by sum-frequency mixing of the 1.535-μm infrared idler wave with the residual 1.064-μm laser radiation. A power of 1.25 W of 1.535-μm idler radiation and 5.7 W of 1.064-μm laser light generated a red 629-nm output power of 2.25 W. Received: 2 February 2000 / Revised version: 28 July 2000 / Published online: 22 November 2000  相似文献   

16.
Period-doubling of dispersion-managed solitons in an Erbium-doped fiber ring laser operating at the near zero net cavity group velocity dispersion region was experimentally observed. The generated dispersion-managed solitons of the laser are characterized by their near Gaussian spectral profiles and no sidebands. Numerical simulations verified our experimental observations and showed that the period-doubling could occur both in the positive and negative near zero net cavity group velocity dispersion regions, which suggests that the occurrence of the period-doubling is an intrinsic feature of the mode-locking fiber lasers and independent of the concrete mode-locked pulse profile.  相似文献   

17.
We present a multi-scale analysis of nonlinear three-wave-interaction processes in photonic crystals. Based on photonic Bloch functions as carrier waves, we derive the effective nonlinear coupled wave equations that govern pulse propagation in these systems and obtain the corresponding effective photonic crystal parameters directly from photonic band-structure computations. As an illustration, we show how hitherto inaccessible radiation-conversion processes such as wave-front reversal of optical pulses can be realized. Furthermore, we describe a novel regime of nonlinear three-wave interaction in photonic crystals associated with the nearly degenerate case and show how these results may be utilized to study experimentally certain problems from plasma physics and hydrodynamics in the context of nonlinear photonic crystals.  相似文献   

18.
A novel scheme for pulse generation with a self-cascaded electroabsorption modulator is presented and experimentally demonstrated at 10 GHz. In the case of optimal tuning of time delay in the fibre loop, the improvement of 50% on pulsewidth with improved extinction ratio is obtained and the narrowest pulse generated with this method is about 11ps.  相似文献   

19.
We report on efficient generation of 1550-nm photon pairs in a periodically poled lithium niobate waveguide using the spontaneous parametric down-conversion process. Such photon pairs are expected to find applications in fiber-based long-distance quantum communication. Pumping the waveguide with a pulsed semiconductor laser with a pulse rate of 800 kHz and a maximum average pump power of 50 μW, we obtain a coincidence rate of 600 s−1. Despite only two single-photon detectors are used, we gain some information about the photon-number distribution. Our measurements are found to be in agreement with a Poissonian photon-pair distribution, but clearly differ from the expected outcomes for both conventional and two-mode squeezed states, the latter corresponding to a thermal photon-pair distribution. The Poissonian photon-pair distribution is also explained by comparing the coherence time of the pump light and of the detected photons. An average of 0.9 generated photon pairs per pulse can thus be inferred.  相似文献   

20.
Filamented propagation of femtosecond laser pulses in fused silica is studied using microscopy of Femtosecond Time-resolved Optical Polarigraphy (FTOP). Both super- and subluminal translation of axial intensity maxima in a 100 fs time scale has been directly recorded. The observed spatio-temporal periodicity of the pulse shape in longitudinal and transversal directions is tentatively interpreted as two projections on X and Y axes of the same fringe pattern formed by the interference of the axial part of the beam and spontaneously generated conical beam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号