首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
We study the existence and the properties of reduced measures for the parabolic equations t u − Δu + g(u) = 0 in Ω × (0, ∞) subject to the conditions (P): u = 0 on Ω × (0, ∞), u(x, 0) = μ and (P′): u = μ′ on Ω × (0, ∞), u(x, 0) = 0, where μ and μ′ are positive Radon measures and g is a continuous nondecreasing function.  相似文献   

2.
Consider the Dirichlet problem −vΔu+k∂ 1 u = f withv, k>0 in ℝ3 or in an exterior domain of ℝ3 where the skew-symmetric differential operator −1=∂/∂x1 is a singular perturbation of the Laplacian. Because of the inhomogeneity of the fundamental solution we study existence, uniqueness and regularity in Sobolev spaces with anisotropic weights. In these spaces the operator ∂1 yields an additional positive definite term giving better results than in Sobolev spaces with radial weights. The elliptic equation −vΔu +k1 u=f can be taken as a model problem for the Oseen equations, a linearized form of the Navier-Stokes equations. Supported by the Sonderforschungsbereich 256 of the Deutsche Forschungsgemeinschaft at the University of Bonn  相似文献   

3.
In accordance with the demands of the so-called local approach to inverse problems, the set of “waves” uf (·, T) is studied, where uf (x,t) is the solution of the initial boundary-value problem utt−Δu=0 in Ω×(0,T), u|t<0=0, u|∂Ω×(0,T)=f, and the (singular) control f runs over the class L2((0,T); H−m (∂Ω)) (m>0). The following result is established. Let ΩT={x ∈ Ω : dist(x, ∂Ω)<T)} be a subdomain of Ω ⊂ ℝn (diam Ω<∞) filled with waves by a final instant of time t=T, let T*=inf{T : ΩT=Ω} be the time of filling the whole domain Ω. We introduce the notation Dm=Dom((−Δ)m/2), where (−Δ) is the Laplace operator, Dom(−Δ)=H2(Ω)∩H 0 1 (Ω);D−m=(Dm)′;D−mT)={y∈D−m:supp y ⋐ ΩT. If T<T., then the reachable set R m T ={ut(·, T): f ∈ L2((0,T), H−m (∂Ω))} (∀m>0), which is dense in D−mT), does not contain the class C 0 T). Examples of a ∈ C 0 , a ∈ R m T , are presented. Translated fromZapiski Nauchnykh Seminarov POMI, Vol. 210, 1994, pp. 7–21. Translated by T. N. Surkova.  相似文献   

4.
The paper addresses the existence and uniqueness of entropy solutions for the degenerate triply nonlinear problem: b(v) t − div α(v, ▽g(v)) = f on Q:= (0, T) × Ω with the initial condition b(v(0, ·)) = b(v 0) on Ω and the nonhomogeneous boundary condition “v = u” on some part of the boundary (0, T) × ∂Ω”. The function g is continuous locally Lipschitz continuous and has a flat region [A 1, A 2,] with A 1 ≤ 0 ≤ A 2 so that the problem is of parabolic-hyperbolic type.  相似文献   

5.
We study the existence of a maximal solution of −Δu+g(u)=f(x) in a domain Ω ∈ ℝ N with compact boundary, assuming thatf ∈ (L loc 1 (Ω))+ and thatg is nondecreasing,g(0)≥0 andg satisfies the Keller-Osserman condition. We show that if the boundary satisfies the classicalC 1,2 Wiener criterion, then the maximal solution is a large solution, i.e., it blows up everywhere on the boundary. In addition, we discuss the question of uniqueness of large solutions. This research was partially supported by an EC Grant through the RTN Program “Front-Singularities”, HPRN-CT-2002-00274.  相似文献   

6.
Sufficient conditions for the existence of an inertial manifold are found for the equation u tt + 2γu t − Δu = f(u, u t ), u = u(x, t), x ∈ Ω ⋐ ℝ N , u| Ω = 0, t > 0 under the assumption that the function f satisfies the Lipschitz condition.  相似文献   

7.
We consider the two-parameter nonlinear eigenvalue problem?−Δu = μu − λ(u + u p + f(u)), u > 0 in Ω, u = 0 on ∂Ω,?where p>1 is a constant and μ,λ>0 are parameters. We establish the asymptotic formulas for the variational eigencurves λ=λ(μ,α) as μ→∞, where α>0 is a normalizing parameter. We emphasize that the critical case from a viewpoint of the two-term asymptotics of the eigencurve is p=3. Moreover, it is shown that p=5/3 is also a critical exponent from a view point of the three-term asymptotics when Ω is a ball or an annulus. This sort of criticality for two-parameter problems seems to be new. Received: February 9, 2002; in final form: April 3, 2002?Published online: April 14, 2003  相似文献   

8.
This paper deals with the strongly coupled parabolic system ut = v^m△u, vt = u^n△v, (x, t) ∈Ω × (0,T) subject to nonlinear boundary conditions 偏du/偏dη = u^αv^p, 偏du/偏dη= u^qv^β, (x, t) ∈ 偏dΩ × (0, T), where Ω 包含 RN is a bounded domain, m, n are positive constants and α,β, p, q are nonnegative constants. Global existence and nonexistence of the positive solution of the above problem are studied and a new criterion is established. It is proved that the positive solution of the above problem exists globally if and only if α 〈 1,β 〈 1 and (m +p)(n + q) ≤ (1 - α)(1 -β).  相似文献   

9.
In this paper, we study cluster sets and essential cluster sets for Sobolev functions and quasiharmonic functions (i.e., continuous quasiminimizers). We develop their basic theory with a particular emphasis on when they coincide and when they are connected. As a main result, we obtain that if a Sobolev function u on an open set Ω has boundary values f in Sobolev sense and f |∂Ω is continuous at x 0 ∈ ∂Ω, then the essential cluster set (u, x 0,Ω) is connected. We characterize precisely in which metric spaces this result holds. Further, we provide some new boundary regularity results for quasiharmonic functions. Most of the results are new also in the Euclidean case.  相似文献   

10.
This paper studies the asymptotic behavior near the boundary for large solutions of the semilinear equation Δu + au = b(x)f(u) in a smooth bounded domain Ω of ℝN with N ≥ 2, where a is a real parameter and b is a nonnegative smooth function on . We assume that f(u) behaves like u(ln u)α as u → ∞, for some α > 2. It turns out that this case is more difficult to handle than those where f(u) grows like u p (p > 1) or faster at infinity. Under suitable conditions on the weight function b(x), which may vanish on ∂Ω, we obtain the first order expansion of the large solutions near the boundary. We also obtain some uniqueness results. Research of both authors supported by the Australian Research Council.  相似文献   

11.
Consider the equation −Δu = 0 in a bounded smooth domain , complemented by the nonlinear Neumann boundary condition ∂ν u = f(x, u) − u on ∂Ω. We show that any very weak solution of this problem belongs to L (Ω) provided f satisfies the growth condition |f(x, s)| ≤ C(1 + |s| p ) for some p ∈ (1, p*), where . If, in addition, f(x, s) ≥ −C + λs for some λ > 1, then all positive very weak solutions are uniformly a priori bounded. We also show by means of examples that p* is a sharp critical exponent. In particular, using variational methods we prove the following multiplicity result: if N ∈ {3, 4} and f(x, s) =  s p then there exists a domain Ω and such that our problem possesses at least two positive, unbounded, very weak solutions blowing up at a prescribed point of ∂Ω provided . Our regularity results and a priori bounds for positive very weak solutions remain true if the right-hand side in the differential equation is of the form h(x, u) with h satisfying suitable growth conditions.  相似文献   

12.
Let Ω be an open bounded set in ℝN, N≥3, with connected Lipschitz boundary ∂Ω and let a(x,ξ) be an operator of Leray–Lions type (a(⋅,∇u) is of the same type as the operator |∇u|p−2u, 1<p<N). If τ is the trace operator on ∂Ω, [φ] the jump across ∂Ω of a function φ defined on both sides of ∂Ω, the normal derivative ∂/∂νa related to the operator a is defined in some sense as 〈a(⋅,∇u),ν〉, the inner product in ℝN, of the trace of a(⋅,∇u) on ∂Ω with the outward normal vector field ν on ∂Ω. If β and γ are two nondecreasing continuous real functions everywhere defined in ℝ, with β(0)=γ(0)=0, fL1(ℝN), gL1(∂Ω), we prove the existence and the uniqueness of an entropy solution u for the following problem,
in the sense that, if Tk(r)=max {−k,min (r,k)}, k>0, r∈ℝ, ∇u is the gradient by means of truncation (∇u=DTku on the set {|u|<k}) and , u measurable; DTk(u)∈Lp(ℝN), k>0}, then and u satisfies,
for every k>0 and every . Mathematics Subject Classifications (2000)  35J65, 35J70, 47J05.  相似文献   

13.
We consider the nonlinear eigenvalue problem −Δuf(u) in Ω u=0 on ∂Ω, where Ω is a ball or an annulus in RN (N ≥ 2) and λ > 0 is a parameter. It is known that if λ >> 1, then the corresponding positive solution uλ develops boundary layers under some conditions on f. We establish the asymptotic formulas for the slope of the boundary layers of uλ with the exact second term and the ‘optimal’ estimate of the third term.  相似文献   

14.
We consider the boundary blowup problem for k-curvature equation, i.e., H k [u] = f(u) g(|Du|) in an n-dimensional domain Ω, with the boundary condition u(x) → ∞ as dist (x,∂Ω) → 0. We prove the existence result under some hypotheses. We also establish the asymptotic behavior of a solution near the boundary ∂Ω. Mathematics Subject Classification (2000) 35J65, 35B40, 53C21  相似文献   

15.
An Application of a Mountain Pass Theorem   总被引:3,自引:0,他引:3  
We are concerned with the following Dirichlet problem: −Δu(x) = f(x, u), x∈Ω, uH 1 0(Ω), (P) where f(x, t) ∈C (×ℝ), f(x, t)/t is nondecreasing in t∈ℝ and tends to an L -function q(x) uniformly in x∈Ω as t→ + ∞ (i.e., f(x, t) is asymptotically linear in t at infinity). In this case, an Ambrosetti-Rabinowitz-type condition, that is, for some θ > 2, M > 0, 0 > θF(x, s) ≤f(x, s)s, for all |s|≥M and x∈Ω, (AR) is no longer true, where F(x, s) = ∫ s 0 f(x, t)dt. As is well known, (AR) is an important technical condition in applying Mountain Pass Theorem. In this paper, without assuming (AR) we prove, by using a variant version of Mountain Pass Theorem, that problem (P) has a positive solution under suitable conditions on f(x, t) and q(x). Our methods also work for the case where f(x, t) is superlinear in t at infinity, i.e., q(x) ≡ +∞. Received June 24, 1998, Accepted January 14, 2000.  相似文献   

16.
Consider the Cauchy problem ∂u(x, t)/∂t = ℋu(x, t) (x∈ℤd, t≥ 0) with initial condition u(x, 0) ≡ 1 and with ℋ the Anderson Hamiltonian ℋ = κΔ + ξ. Here Δ is the discrete Laplacian, κ∈ (0, ∞) is a diffusion constant, and ξ = {ξ(x): x∈ℤ d } is an i.i.d.random field taking values in ℝ. G?rtner and Molchanov (1990) have shown that if the law of ξ(0) is nondegenerate, then the solution u is asymptotically intermittent. In the present paper we study the structure of the intermittent peaks for the special case where the law of ξ(0) is (in the vicinity of) the double exponential Prob(ξ(0) > s) = exp[−e s ] (s∈ℝ). Here θ∈ (0, ∞) is a parameter that can be thought of as measuring the degree of disorder in the ξ-field. Our main result is that, for fixed x, y∈ℤ d and t→∈, the correlation coefficient of u(x, t) and u(y, t) converges to ∥w ρ−2 ℓ2Σz ∈ℤd w ρ(x+z)w ρ(y+z). In this expression, ρ = θ/κ while w ρ:ℤd→ℝ+ is given by w ρ = (v ρ) d with v ρ: ℤ→ℝ+ the unique centered ground state (i.e., the solution in ℓ2(ℤ) with minimal l 2-norm) of the 1-dimensional nonlinear equation Δv + 2ρv log v = 0. The uniqueness of the ground state is actually proved only for large ρ, but is conjectured to hold for any ρ∈ (0, ∞). empty It turns out that if the right tail of the law of ξ(0) is thicker (or thinner) than the double exponential, then the correlation coefficient of u(x, t) and u(y, t) converges to δ x, y (resp.the constant function 1). Thus, the double exponential family is the critical class exhibiting a nondegenerate correlation structure. Received: 5 March 1997 / Revised version: 21 September 1998  相似文献   

17.
One considers a semilinear parabolic equation u t = Lua(x)f(u) or an elliptic equation u tt + Lua(x)f(u) = 0 in a semi-infinite cylinder Ω × ℝ+ with the nonlinear boundary condition , where L is a uniformly elliptic divergent operator in a bounded domain Ω ∈ ℝn; a(x) and b(x) are nonnegative measurable functions in Ω. One studies the asymptotic behavior of solutions of such boundary-value problems for t → ∞. __________ Translated from Trudy Seminara imeni I. G. Petrovskogo, No. 26, pp. 368–389, 2007.  相似文献   

18.
We prove that, starting at an initial metric g(0)=e2u0(dx2+dy2)g(0)=e^{2u_{0}}(dx^{2}+dy^{2}) on ℝ2 with bounded scalar curvature and bounded u 0, the Ricci flow t g(t)=−R g(t) g(t) converges to a flat metric on ℝ2.  相似文献   

19.
Exact controllability for the wave equation with variable coefficients   总被引:2,自引:0,他引:2  
We consider in this paper the evolution systemy″−Ay=0, whereA = i(aijj) anda ijC 1 (ℝ+;W 1,∞ (Ω)) ∩W 1,∞ (Ω × ℝ+), with initial data given by (y 0,y 1) ∈L 2(Ω) ×H −1 (Ω) and the nonhomogeneous conditiony=v on Γ ×]0,T[. Exact controllability means that there exist a timeT>0 and a controlv such thaty(T, v)=y′(T, v)=0. The main result of this paper is to prove that the above system is exactly controllable whenT is “sufficiently large”. Moreover, we obtain sharper estimates onT.  相似文献   

20.
In this paper we perform an extensive study of the existence, uniqueness (or multiplicity) and stability of nonnegative solutions to the semilinear elliptic equation − Δu = λ uu p in Ω, with the nonlinear boundary condition ∂u/∂ν = u r on ∂Ω. Here Ω is a smooth bounded domain of with outward unit normal ν, λ is a real parameter and p, r > 0. We also give the precise behavior of solutions for large |λ| in the cases where they exist. The proofs are mainly based on bifurcation techniques, sub-supersolutions and variational methods.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号