首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Methionine (Met) is an essential sulfur‐containing amino acid, sensitive to oxidation. The oxidation of Met can occur by numerous pathways, including enzymatic modifications and oxidative stress, being able to cause relevant alterations in protein functionality. Under UV radiation, Met may be oxidized by direct absorption (below 250 nm) or by photosensitized reactions. Herein, kinetics of the reaction and identification of products during photosensitized oxidation were analyzed to elucidate the mechanism for the degradation of Met under UV‐A irradiation using pterins, pterin (Ptr) and 6‐methylpterin (Mep), as sensitizers. The process begins with an electron transfer from Met to the triplet‐excited state of the photosensitizer (Ptr or Mep), to yield the corresponding pair of radicals, Met radical cation (Met?+) and the radical anion of the sensitizer (Sens??). In air‐equilibrated solutions, Met?+ incorporates one or two atoms of oxygen to yield methionine sulfoxide (MetO) and methionine sulfone (MetO2), whereas Sens?? reacts with O2 to recover the photosensitizer and generate superoxide anion (O2??). In anaerobic conditions, further free‐radical reactions lead to the formation of the corresponding dihydropterin derivatives (H2Ptr or H2Mep).  相似文献   

2.
Protein-bound methionine (Met) oxidation has been associated with normal aging and a variety of age-related diseases, including Alzheimer’s disease and Parkinson’s disease. Monitoring the changes of protein-bound methionine content in the brain in response to normal aging and oxidative stress is of great interest and could be used as an indicator of oxidative stress of rats in pathological conditions. We have developed a rapid analytical method for the determination of oxidized products of protein-bound methionine in rat brain. The assay involved rapid acid proteolysis with microwave irradiation and solid-phase extraction of the free amino acids followed by LC-ESI-ITMS analysis. Detection was achieved in positive ionization with an ion trap mass spectrometer operating in multiple-reaction monitoring mode. The calibration curves of the analytes were linear (r 2 > 0.99) in the range between 0.098 and 1.560 μg/mL. Intra- and inter-day relative standard deviation percentages were <9% and <8%, respectively. The assay performance was sufficient to support a rapid analytical tool for monitoring brain protein-bound methionine oxidation levels. The content of protein-bound Met and methionine sulfoxide (MetO) in the hippocampus of adult and old rats with or without H2O2 treatment was determined by employing the new method. The content of protein-bound MetO was significantly increased in old rats after exposure to H2O2. This result indicates increased sensitivity to Met oxidation in the hippocampus of old rats.  相似文献   

3.
Crystallographic analysis of a solid solution of two diastereoisomers, i.e. ({(1S,R)‐1‐carboxy‐3‐[(R,S)‐methylsulfinyl]propyl}aminocarbonyl)methanaminium tetrachloridoaurate(III) and ({(1S,R)‐1‐carboxy‐3‐[(S,R)‐methylsulfinyl]propyl}aminocarbonyl)methanaminium tetrachloridoaurate(III), (C7H15N2O4S)[AuCl4], has shown that in the presence of gold(III), the methionine part of the Gly‐d ,l ‐Met dipeptide is oxidized to sulfoxide, and no coordination to the AuIII cation through the S atom of the sulfoxide is observed. In view of our observation, literature reports that methionine acts as an N,S‐bidentate donor ligand forming stable gold(III) complexes require verification. Moreover, it has been demonstrated that crystallization of the oxidation product leads to a substantial 77:23 excess of both S‐methionine/R‐sulfoxide and R‐methionine/S‐sulfoxide over S‐methionine/S‐sulfoxide and R‐methionine/R‐sulfoxide. The presence of two different diastereoisomers at the same crystallographic site is a source of static disorder at this site.  相似文献   

4.
Structural modification of a polypeptide hormone, glucagon, by a hydroxyl radical in vitro was investigated by reversed‐phase high‐performance liquid chromatography (RP‐HPLC), and the oxidized site of glucagon was detected by electrospray ionization tandem mass spectrometry (ESI‐MS/MS). It was shown that 27methionine (Met) was oxidized to 27Met sulfoxide by hydroxyl radical, and the production rate of 27Met sulfoxide was faster than that by hydrogen peroxide. In addition, production of 27Met sulfoxide enantiomer was confirmed by RP‐HPLC analysis. cAMP production in a HepG2 cell induced by 27Met sulfoxide glucagon was reduced to approximately 75% as compared with that induced by the native form of glucagon. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Hydrogen peroxide and hydroxyl radical, both important members of the reactive oxygen species (ROS) family, can cause serious oxidative damages in biological systems. In order to proclaim and prevent oxidation stress, researches on the biomolecule oxidation induced by H2O2 or OH. are in crucial need. However, due to the high reactivity of ROS, traditional methods are difficult to achieve the in situ quantitative investigations on those reactions involving ROS. In this work, using scanning electrochemical microscopy technique (SECM) in a tip generation‐substrate collection mode (TG‐SC), the controllable release and the high‐efficiency collection of electrogenerated H2O2 were achieved. Compared to ex situ fluorescence method, SECM improved the collection efficiency approximately two times larger. Based on it, SECM combined with surface plasmon resonance (SPR) was employed to in situ monitor the protein oxidation (taking Cu12+? MT as a model) induced by H2O2. OH., which was generated from the interaction between H2O2 and Cu12+? MT, can attack the peptide chain and induced the unrepairable protein oxidation damage. The whole process was quantitatively characterized by SPR, and the linear relationship between SPR dip shift and the amounts of released H2O2 was successfully built. Our work proves that the combined SECM‐SPR technique can realize the in situ quantitative determinations of the biomolecule oxidation induced by ROS, which affords an avenue for further elucidation on the mechanisms of oxidation stress in organisms.  相似文献   

6.
The primary structure of the deteriorated recombinant human basic fibroblast growth factor (rhbFGF) was determined by ultra‐performance liquid chromatography and electrospray ionization quadrupole time‐of‐flight mass spectrometry (UPLC/ESI‐QTOF‐MS) with in‐source collision‐induced dissociation (CID). The rhbFGFs before and after treatment with hydrogen peroxide (H2O2) were separated using an ACQUITY UPLC BEH300 C18 column (1.7 µm, 150 mm × 2.1 mm i.d.) with a gradient elution of a mixture of water/acetonitrile containing 0.1% formic acid. The separated proteins were then detected by a SYNAPT? High Definition Mass Spectrometry? system (SYNAPT‐MS). Two methionine (Met) residues in the rhbFGF structure were oxidized to Met‐sulfoxide (Met‐O) in 0.03% H2O2 at pH 2.0. As the result, three peaks, except for the peak of rhbFGF, appeared on the chromatogram. The three proteins corresponding to each peak were estimated as the denatured rhbFGFs including the Met‐O residue(s) with TOF‐MS. Furthermore, the position of the Met‐O residue(s) was efficiently identified by UPLC/ESI‐QTOF‐MS using the in‐source CID technique. The proposed method seems to be very useful for the structural elucidation of proteins, because the oxidized Met residues in rhbFGF were easily and rapidly identified. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
On‐surface degradation of sildenafil (an adequate substrate as it contains assorted functional groups in its structure) promoted by the Fenton (Fe2+/H2O2) and Fenton‐like (Mn+/H2O2; Mn+ = Fe3+, Co2+, Cu2+, Mn2+) systems was investigated by using paper spray ionization mass spectrometry (PS‐MS). The performance of each system was compared by measuring the ratio between the relative intensities of the ions of m/z 475 (protonated sildenafil) and m/z 235 (protonated lidocaine, used as a convenient internal standard and added to the paper just before the PS‐MS analyzes). The results indicated the following order in the rates of such reactions: Fe2+/H2O2 ≫ H2O2 ≫ Cu2+/H2O2 > Mn+/H2O2 (Mn+ = Fe3+, Co2+, Mn2+) ~ Mn+ (Mn+ = Fe2+, Fe3+, Co2+, Cu2+, Mn2). The superior capability of Fe2+/H2O2 in causing the degradation of sildenafil indicates that Fe2+ efficiently decomposes H2O2 to yield hydroxyl radicals, quite reactive species that cause the substrate oxidation. The results also indicate that H2O2 can spontaneously decompose likely to yield hydroxyl radicals, although in a much smaller extension than the Fenton system. This effect, however, is strongly inhibited by the presence of the other cations, ie, Fe3+, Co2+, Cu2+, and Mn2+. A unique oxidation by‐product was detected in the reaction between Fe2+/H2O2 with sildenafil, and a possible structure for it was proposed based on the MS/MS data. The on‐surface reaction of other substrates (trimethoprim and tamoxifen) with the Fenton system was also investigated. In conclusion, PS‐MS shows to be a convenient platform to promptly monitor on‐surface oxidation reactions.  相似文献   

8.
We have developed a method for rapidly quantifying the extent to which the functionally important Met144 and Met145 residues near the C-terminus of calmodulin (CaM) are converted to the corresponding sulfoxides, Met(O). The method utilizes a whole protein collision-induced dissociation (CID) approach on an electrospray ionization quadrupole time-of-flight (ESI-Q-TOF) mass spectrometer. Using standards of CaM oxidized by hydrogen peroxide (H2O2) or peroxynitrite (ONOO), we demonstrated that CID fragmentation of the protein ions resulted in a series of C-terminal singly charged y1–y15 ions. Fragments larger than y4 exhibited mass shifts of +16 or +32 Da, corresponding to oxidation of one or two methionines, respectively. To assess the extent of oxidative modification for Met144 and Met145 to Met(O), we averaged the ratio of intensities for y n , y n + 16, and y n + 32 ions, where n = 6–9. By alternating MS and CID scans at low and high collision energies, this technique allowed us to rapidly determine both the distribution of intact CaM oxiforms and the extent of oxidative modification in the C-terminal region of the protein in a single run. We have applied the method to studies of the repair of fully oxidized CaM by methionine sulfoxide reductases (MsrA and MsrB), which normally function in concert to reduce the S and R stereoisomers of methionine sulfoxide. We found that repair of Met(O)144 and Met(O)145 did not go to completion, but was more efficient than average Met repair. Absence of complete repair is consistent with previous studies showing that accumulation of methionine sulfoxide in CaM can occur during aging (Gao, J.; Yin, D.; Yao, Y.; Williams, T. D.; Squier, T. C. Biochemistry 1998, 37, 9536–9548).  相似文献   

9.
《Analytical letters》2012,45(8):1070-1083
Abstract

Oxidation of methionine of human granulocyte colony stimulating factor (GCSF) results in loss of biological activity. In this study, we report the use of an Agilent 2100 bioanalyzer to detect oxidized forms of rhGCSF after exposure to hydrogen peroxide (H2O2). Our data show that the bioanalyzer is capable of detecting minor changes in rhGCSF after oxidation with 0.01% (w/v) H2O2, which results in nearly 50% loss in biological activity as observed by cell (NFS-60) proliferation assay. Dithiothreitol could largely protect such a H2O2-mediated oxidation, and thus, we conclude that the major modification of GCSF upon methionine oxidation is the conversion of methionines to its sulfoxide.  相似文献   

10.
The reactivity of the sulfur‐containing nucleoside 4‐thio‐(2′‐deoxy)‐thymidine usually abbreviated as 4‐thio‐thymidine, (S4‐TdR) under Fenton conditions, ie, in the presence of H2O2 and catalytic amounts of Fe(II), was investigated by UV‐vis spectroscopy and electrospray ionization single and tandem mass spectrometry (ESI‐MS and MS/MS). S4‐TdR hydroxylated on the S atom was found to be a key reaction intermediate, ultimately leading to (2′‐deoxy)‐thymidine usually abbreviated as thymidine, (TdR) as the main reaction product. This finding was in accordance with the outcome of the reaction between S4‐TdR and H2O2, previously investigated in our laboratory. On the other hand, the additional presence of ?OH radicals, induced by the Fe(II)/H2O2 combination, led to the increased generation of another interesting S4‐TdR product, already observed after its reaction with H2O2 alone, ie, the covalent dimer including a S? S bridge between two S4‐TdR molecules. More importantly, multihydroxylated derivatives of S4‐TdR and TdR were detected as peculiar products obtained under Fenton conditions. Among them, a product bearing an OH group both on the methyl group linked to the thymine ring and on the C5 atom of the ring was found to prevail. The results obtained during this study, integrated by those found previously in our laboratory, indicate 4‐thiothymidine as a promising molecular probe for the recognition, through a careful characterization of its reaction products, of the prevailing species among reactive oxygen species (ROS) corresponding to singlet‐state oxygen, hydrogen peroxide, and hydroxylic radical.  相似文献   

11.
We investigated the formation of hydroxyl radical (OH·) and H2O2 mediated oxidation products of a synthetic peptide, HCSAGIGRS, which is an active site sequence motif of protein tyrosine phosphatase 1B (PTP1B). We determined that a novel cysteine sulfinamide HC[S(O)N]SAGIGRS is produced in the oxidation reaction by Fenton reagents (Fe+2/H2O2) as well as by H2O2. These products were characterized by tandem mass spectrometry experiments on both singly and doubly charged precursor ions. MS3 experiments using an ion trap instrument as well as LC-MS/MS experiments using a quadrupole time-of-flight (Q-TOF) instrument demonstrated that HC[S(O)N]SAGIGRS is not a water loss product of cysteine sulfinic acid [HC(SO2H)SAGIGRS]. We also obtained data from tandem mass spectrometry experiments that provided evidence for the existence of stable cysteine sulfenic acid [HC(SOH)SAGIGRS] in solution. A mechanism for the formation of the cysteine sulfinamide product is proposed based on the above experimental results. The preparation and identification of cysteine sulfinamide in this study may provide insight into the mechanism of both OH· and H2O2 induced oxidation reactions of protein tyrosine phosphatases.  相似文献   

12.
Singlet molecular oxygen (1O2) is generated in biological systems and reacts with different biomolecules. Proteins are a major target for 1O2, and His, Tyr, Met, Cys, and Trp are oxidized at physiological pH. In the present study, the modification of lysozyme protein by 1O2 was investigated using mass spectrometry approaches. The experimental findings showed methionine, histidine, and tryptophan oxidation. The experiments were achieved using [18O]‐labeled 1O2 released from thermolabile endoperoxides in association with nano‐scale liquid chromatography coupled to electrospray ionization mass spectrometry. The structural characterization by nLC‐MS/MS of the amino acids in the tryptic peptides of the proteins showed addition of [18O]‐labeling atoms in different amino acids.  相似文献   

13.
Excessive consumption of Fe (II) and massive generation of sludge containing Fe (III) from classic Fenton process remains a major obstacle for its poor recycling of Fe (III) to Fe (II). Therefore, the MHACF‐MIL‐101(Cr) system, by introducing H2, Pd0 and MIL‐101(Cr) into Fenton reaction system, was developed at normal temperature and pressure. In this system, the reduction of FeIII back to FeII by solid catalyst Pd/MIL‐101(Cr) for the storage and activation of H2, was accelerated significantly by above 10‐fold and 5‐fold controlled with the H2‐MIL‐101(Cr) system and H2‐Pd0 system, respectively. However, the concentration of Fe (II) generated by the reduction of Fe (III) could not be detected with the only input of H2 and without the addition of MOFs material. In addition, the apparent consumption of Fe (II) in MHACF‐MIL‐101(Cr) system was half of that in classical Fenton system, while more Fe (II) might be reused infinitely in fact. Accordingly, only trace amount of Fe (II) vs H2O2 concentration was needed and hydroxyl radicals through the detection of para‐hydroxybenzoic acid (p‐HBA) as the oxidative product of benzoic acid (BA) by·OH could be continuously generated for the effective degradation of 4‐chlorophenol(4‐CP). The effects of initial pH, concentration of 4‐CP, dosage of Fe2+, H2O2 and Pd/MIL‐101(Cr) catalyst, Pd content and H2 flow were investigated, combined with systematic controlled experiments. Moreover, the robustness and morphology change of Pd/MIL‐101(Cr) were thoroughly analyzed. This study enables better understanding of the H2‐mediated Fenton reaction enhanced by Pd/MIL‐101(Cr) and thus, will shed new light on how to accelerate Fe (III)/Fe (II) redox cycle and develop more efficient Fenton system.  相似文献   

14.
Abstract

The classical Fenton system composed of Fe(II) and H2O2 uses harsh oxidative conditions and cannot realistically simulate physiological oxidations which are less severe. Here, reactive oxygen species (ROS) were generated with a combination of CoSO4 and H2O2 to provide milder conditions. DNA was used as a biologically meaningful probe for monitoring the oxidative conversion. Oxidative hazard on DNA was accomplished in ammonia/ammonium chloride buffer at 37?°C, and the Fenton reaction was stopped with trichloroacetic acid (TCA). A suitable aliquot of this solution was added to cupric ion reducing antioxidant capacity (CUPRAC) reaction mixture, and the absorbance at 450?nm was recorded. The oxidized species derived from DNA were CUPRAC-reactive while intact DNA was not. The protective effects of antioxidants (AOxs), known to have radical scavenging effects, were tested; green tea and a synthetic fetal bovine serum (FBS) were also successfully used as real ROS scavengers. Although the classical iron-based Fenton procedure applied in ethanol medium generated CUPRAC-responsive products, the proposed system was perfectly ethanol-tolerant, enabling the CUPRAC measurement of DNA oxidation products against an unaffected reagent blank. The protective effects of phenolic antioxidants, perfectly solubilized in ethanol, could also be measured.  相似文献   

15.
Among damages reported to occur on proteins, radical-based changes of methionine (Met) residues are one of the most important convalent post-translational modifications. The combined application of Raman and infrared (IR) spectroscopies for the characterisation of the radical-induced modifications of Met is described here. Gamma-irradiation was used to simulate the endogenous formation of reactive species such as hydrogen atoms (H), hydroxyl radicals (OH) and hydrogen peroxide (H2O2). These spectroscopic techniques coupled to mass experiments are suitable tools in detecting almost all the main radical-induced degradation products of Met that depend on the nature of the reactive species. In particular, Raman spectroscopy is useful in revealing the radical-induced modifications in the sulphur-containing moiety, whereas the IR spectra allow decarboxylation and deamination processes to be detected, as well as the formation of other degradation products. Thus, some band patterns useful for building a library of spectra–structure correlation for radical-based degradation of Met were identified. In particular, the bands due to the formation of methionine sulfoxide, the main oxidation product of Met, have been identified. All together, these results combine to produce a set of spectroscopic markers of the main processes occurring as a consequence of radical stress exposure, which can be used in a spectroscopic protocol for providing a first assessment of Met modifications in more complex systems such as peptides and proteins, and monitoring their impact on protein structure.  相似文献   

16.
The key scientific problems with conventional Fenton reactions are the acidic pH dependence and low ROS production due to inefficient decomposition of H2O2. Although Cu–Fenton reactions can break the pH limitation, there is still an urgent need to improve the overall reaction efficiency, and thus broaden its applicability. Herein, we describe a synergistic strategy by introducing MoO3 cocatalyst and creatinine (Cr) assistant to enhance the efficiency of Cu–Fenton reactions at near-neutral pH. In this strategy, Cu2+ interacts with Cr to form a complex (CuCr2), which is then mainly linked to MoO3 via the Cu2+ binding site (CuCr2/MoO3). Experimental and theoretical calculation results manifest that the CuCr2/MoO3 exhibits an excellent cocatalytic activity, which significantly facilitates the rate-limiting step of Cu–Fenton reactions, and enables the efficient decomposition of H2O2 for the generation of three reactive oxygen species (ROS, ?OH, 1O2, ?O2?). More significantly, this cocatalytic system with high oxidation activity can be applied for the detection of Cu2+ and ROS-based chemodynamic therapy (CDT), as well as sterilization of Escherichia coli. This study represents a new breakthrough in improving the efficiency of Fenton-based reactions with a facile and promising strategy, and drives great progress in practicality.  相似文献   

17.
Generation of hydroxyl radicals in the Fenton system (FeII/H2O2) is seriously limited by the sluggish kinetics of FeIII reduction and fast FeIII precipitation. Here, boron crystals (C‐Boron) remarkably accelerate the FeIII/FeII circulation in Fenton‐like systems (C‐Boron/FeIII/H2O2) to produce a myriad of hydroxyl radicals with excellent efficiencies in oxidative degradation of various pollutants. The surface B?B bonds and interfacial suboxide boron in the surface B12 icosahedra are the active sites to donate electrons to promote fast FeIII reduction to FeII and further enhance hydroxyl radical production via Fenton chemistry. The C‐Boron/FeIII/H2O2 system outperforms the benchmark Fenton (FeII/H2O2) and FeIII‐based sulfate radical systems. The reactivity and stability of crystalline boron is much higher than the popular molecular reducing agents, nanocarbons, and other metal/metal‐free nanomaterials.  相似文献   

18.
The exposure of peptides and proteins to reactive hydroxyl radicals results in covalent modifications of amino acid side‐chains and protein backbone. In this study we have investigated the oxidation the isomeric peptides tyrosine–leucine (YL) and leucine–tyrosine (LY), by the hydroxyl radical formed under Fenton reaction (Fe2+/H2O2). Through mass spectrometry (MS), high‐performance liquid chromatography (HPLC‐MS) and electrospray tandem mass spectrometry (HPLC‐MSn) measurements, we have identified and characterized the oxidation products of these two dipeptides. This approach allowed observing and identifying a wide variety of oxidation products, including isomeric forms of the oxidized dipeptides. We detected oxidation products with 1, 2, 3 and 4 oxygen atoms for both peptides; however, oxidation products with 5 oxygen atoms were only present in LY. LY dipeptide oxidation leads to more isomers with 1 and 2 oxygen atoms than YL (3 vs 5 and 4 vs 5, respectively). Formation of the peroxy group occurred preferentially in the C‐terminal residue. We have also detected oxidation products with double bonds or keto groups, dimers (YL–YL and LY–LY) and other products as a result of cross‐linking. Both amino acids in the dipeptides were oxidized although the peptides showed different oxidation products. Also, amino acid residues have shown different oxidation products depending on the relative position on the dipeptide. Results suggest that amino acids in the C‐terminal position are more prone to oxidation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The study of DNA damage induced by Fenton reaction (Fe2+/H2O2) in vitro was performed based on the direct electrochemical oxidation of 8‐hydroxydeoxyguanosine (8‐OH‐dG), the biomarker of DNA oxidative damage, at an electrochemically modified glassy carbon electrode (GCE). The effects of antioxidants, such as ascorbic acid, and hydroxyl‐radical scavenger (mannitol) on the DNA damage were also investigated. 8‐OH‐dG, the oxidation product of guanine residues in DNA, has shown significantly oxidative peak on the electrochemically modified GCE. The oxidative peak current of 8‐OH‐dG was linear with the damaged DNA concentration in the range of 10–200 mg/L. The experimental results demonstrate that ascorbic acid has ambivalent effect on DNA oxidative stress. It can promote DNA oxidative damage when ascorbic acid concentration is below 1.5 mM and protect DNA from damage in the range of 1.5–2.5 mM. As a hydroxyl‐radical scavenger, mannitol inhibits significantly DNA oxidative damage. The influence of Fe2+, as reactant, and EDTA as iron chelator in the system were also studied. The proposed electrochemical method can be used for the estimation of DNA oxidative damage from new point of view.  相似文献   

20.
The electrochemical behavior of two manganese (Mn)‐substituted polyoxoanions, the dissymmetrical Dawson sandwich‐type [MnII4(H2O)2(H4AsW15O56)2]18? and the Keggin sandwich banana‐shaped [((MnIIOH2)MnII2PW9O34)2(PW6O26)]17? is investigated. At pH 5, the oxidation of the MnII‐centers results in one oxidation wave for [MnII4(H2O)2(H4AsW15O56)2]18? and two oxidation waves for [((MnIIOH2)MnII2PW9O34)2(PW6O26)]17?. To the best of our knowledge, presence of the second Mn‐based wave is rarely observed in the electrochemistry of Mn‐containing polyoxometalates. Deposition of Mn‐oxides electrocatalysts for dioxygen reduction is noticed by cyclic voltammetry, which can be distinguished by the significant positive shift in potentials of the dioxygen reduction reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号